Mathematical modeling in biology.

D. Salort, LBCQ, Sorbonne University, Paris

03-07 september 2018

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Modeéle Leaky-Integrate and Fire. Idea of proof.
Equation with transmission delay

Leaky Integrate and Fire model

Leaky Integrate and Fire model :
@ Neuron describe via its membrane potential v € (—oo, VF)
@ When the membrane potential reach the value Vg, the neuron spikes
@ After a spike, the neuron, instantly, reset at the value Vp.

Model chosen (Brunel, Hakim) :

ap o 8%p
S0+ S [(— v BND)p(v. 0] — o 55 (v. 1) = NSV — VR), v < Ve,
—_— neurons reset
Leaky Integrate and Fire noise
p(VE, 1) =0, p(—oo,t) =0, p(v,0)=p°(v)>0 N(t):= —a%(vﬁ >0

@ p(v,t) : density of neurons at time t with a membrane potential v € (—oo, Vg)
@ b : strength of interconnexions.
@ N(t): Flux of neurons which discharge at time t.

Before studying this Equation, let us make some recall/study of simplest equations related to this
one
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The heat Equation on R.

Heat equation: Let us consider the following Equation defined for x € R by
oru(t, x) — Oxxu(t,x) =0, u(0) = up.

The solution can be written explicitly as

ot = [ Ktx - vy

with
K(t, x) := e 4.

@ K is a particular solution of the heat Equation

@ We have
lim K(t,X) = 0x=0-
t—0
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The transport equation and advection equation (d = 1).

Let V: Rt x R — R be a smooth function.
Transport equation: The transport equation associated to V is given by

oru(t, x) + V(t,x)oxu(t,x) =0, u(0,x)=uy, x€R, teR*t.

Advection equation: The advection equation associated to V is given by

oru(t, x) + dx(V(t, x)u(t,x)) =0, u(0,x)=uw, xeR, teR".
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The heat Equation on (—oco, VE) with an external source as in the
(NNLIF).

Let us consider the following Equation defined for x € (—oo, V) by
oru(t, v) — owu(t, v) = y=yyN(t), u(0) = uo.

U(f, VF) =0, —8vu(t, VF) = N(l‘)

We also have an explicit solution

Ve t t
u(t, x) = /_ K(t, x — y)uo(y)dy + /O N(r)K(t — 7, Vi — x)dr — /0 N(r)K(t — 7, Vi — x)dr.
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Model chosen

19) 0 82
2,0+ 2= [(— v bN(D)p(v, D] —o S B (v, 1) = N(DS(v = V), v < Ve,
N e
Leaky Integrate and Fire noise neurons reset

p(Vg, 1) =0, p(—o0,t) =0, p(v,0) :pO(V) >0.
op
N(t) := —oc—(V, >0.
(1) =~ (Ve 1) >0
Questions :

@ Qualitative dynamic and existence/uniqueness result (with Carrillo, Perthame, Smets,

Caceres, Roux, Schneider) (see also Caceres, Carrillo, Gonzalez, Gualdani, Perthame ,
Schonbek )

@ Link between micro and macroscopic model ( Delarue, Inglis, Rubenthaler, Tanré)
@ Link with time elapsed model ? (Dumont, Henry, Tarniceriu)
@ Add of heterogeneity (with B. Perthame and G. Wainrib)
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Link with the time elapsed model in the linear case.

Link with the time elapsed model in the linear case with K(s, u) = §s—o. (Dumont, Henry,
Tarniceriu)

Term of discharge d(s) in time elapsed : We compute d of Equation

orn+ Osn+ d(s)n(s,t) =0
corresponding to the one given by the Fokker-Planck equation.
Steps :
@ We consider the function q(s, v) solution of
9sq(s, V) + 0v(—vq) —odwq =0, q(s=0,vV)=0y_y,.

@ d constructed via g using that the probability that a neuron reach the age s without discharge
is

V
P(a>s) :/ F q(s, v)dv = e~ J§ d(a)da,
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Link with the time elapsed model in the linear case.

Link kernel K : Density of probability K(v, s) for a neuron to be at the potential v knowing that the
time elapsed since its last discharge is > s,

q(s, v)

K(v,s) := 7]]’;0 oS, v)dv.

Formula of p with respectto n:

+o0 +o00o
If po(v) ::/0 K(v,s)ny(s)ds, then p(v,t) :/0 K(v,s)n(t, s)ds

is solution of

o)
0P+ 0u(~vP) — oDwp = S,y N, N(D) i= =0 S0 (Ve 1), p(0, V) = po.

with n solution of
Otn+ dsn+d(s)n=0, n(0,s) = ny(s).
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Qualitative dynamic

op b} 8%p
82‘( t)‘f‘* [(—v+bN(1))p(v, 1)] —am(v,t):N(t)é(v— VR), v < Vg,
——— v

Leaky Integrate and Fire noise neurons reset
p(Ve,)=0,  p(—o0,t)=0,  p(v,0)=p°(v) >0.

op
= —0— >0.
N(t) UBV(VF’t) >0

Well posedness of the solution ?

The total activity of the network N(t) acts instantly on the network.

@ With the diffusion, this implies that for all b > 0, by well choosing the initial data, we have
blow-up (Caceres, Carrillo, Perthame).

@ As soon b < 0, the solution is globally well defined (Carrillo, Gonzalez, Gualdani, Schonbek,
Delarue, Inglis, Rubenthaler, Tanré).

© If we add a delay N on the network, the equation is always well posed (with Caceres, Roux,
Schneider)
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Qualitative dynamic
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Qualitative dynamic
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Qualitative dynamic

Stationary states (Caceres, Carrillo, Perthame)

Implicit formula

Noo (v—bNeo ) ['VF (W—bNoo)?
Po(V)=—e 20 / e 2 aw
a max(v,VR)
with the constraint on N y
A
Poo(V)dv = 1.

@ There exists C > 0 such that, if b < C, there exists a unique stationary state

@ for intermediate b and some range of parameters (Vg, VF, o), there exists at least two
stationary states

@ |If bis big enough, there is no stationary states.
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Qualitative dynamic

Asymptotic qualitative dynamic : if b = 0 (no interconnexions) solutions converge to a stationary
state (Caceres, Carrillo, Perthame)

Idea of the proof :

@ Entropy inequality with G(x) = (x — 1)>?

%/,Zp""(v)e(gio(v)))dv *2"/ P |5, (ﬁﬁf&i)r‘”

@ Poincaré estimates

7 _ 2 v, _ 2
/ i wdvgcf F,Doo (V (M)) av.
— 00 poo — 00 pOO
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Entropy estimate

Classical entropy estimates : Let G(x) = (x — 1), then
d v p(v t))
— (V)G ; dv =
at /_oop “) (poo(V)

(o) o (em) - (v~ pm) & (5]

< 0 because G convex

ar [ e [ (B0

o [ [o (B50) (25 1) o (50 o

non linear part
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Qualitative dynamic

What happens if we add interconnexions ? (Carrillo, Perthame, Salort, Smets)

Inhibitory case :

@ Inhibitory case : Uniform estimates on N in L2, independent of b and the initial data,
@ Inhibitory case : L°>° estimates dependent of b and the initial data.

Exitatory case :
@ Estimates on N, depending on the initial data and b.

@ Convergence to a unique stationary state for sufficiently weak interconnections with respect to
the initial data

Existence of periodic solutions ?
@ Not numerically observed

@ Signification of the blow-up condition ? Is there a way to prolongate the solution after the
blow-up ?
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A priori estimates on N.

Theorem :

Inhibitory case :

@ There exists a constant C, such that for all initial data and b < 0, there exists T > 0 such that
forall / C [T, +o0),

[Nzt < et + 1y
/

@ Assume the initial data in L°°. Then, for all b < 0, there exists C > 0 such that

(IN[lLe < C.
Excitatory case :
@ Given an initial data and b > 0 small enough, 3 C > 0 such that for all interval /,

/N(t)zdt <c(1+11)
/
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Asymptotic dynamic.

Theorem :

Inhibitory case :
@ Letb<0.3C,u > 0suchthatforall 0 < —b < C and all initial data

Vv _ 2 Vv _ 2
/ F o (pp&) (t,v)adv < e*‘“/ ¥ oo (pp&) (0, v)dv.

Excitatory case :
@ Given an initial data, if b > 0 is small enough, then 3 p > 0 such that

v _ 2 Ve B 2
/ F . (pp&) (t,v)av < e—ut/ oo (pp&) (0, v)dv.
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Entropy estimate

Classical entropy estimates : Let G(x) = (x — 1), then
d v p(v t))
— (V)G ; dv =
at /_oop “) (poo(V)

(o) o (em) - (v~ pm) & (5]

< 0 because G convex

ar [ e [ (B0

o [ [o (B50) (25 1) o (50 o

non linear part
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Entropy estimates.

Strategy to obtain uniform estimates (inhibitory case)

Introduction of a fictif stationary state associated to a parameter b; > 0 different from b < 0.

For all convex function G regular,

d p(v,t)\ _
aP=(")C (plo(V)> =

i [o(5) e (550) - (W2 - i) @ ()
e (350) [ ()]

o —om ol 0(5°5) - i (i)
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Idea of proof for uniform estimates.

We choose G(x) = x2, by > 0 given, we multiply by a function ~ supported on ( Vg, Vg], to have

17 () oo

Ve 2 2
[ vronmel (£-) e - T e

720/7‘:) Pl (av (é)) ~(v) dv+o/ ol (p’;)z(t, V)Y (v)av

~ (bN(t) — ByNL ) /VF +(V)Avpls (%f dv.

J —oo (o)
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Sursolution methods.

We assume that b < 0 and that 0 < Vi < V.

Definition

Letb <0, Vy € [—o0, VF) and T > 0. A function p is a universel sur-solution on [Vg, VE] x [0, T] if

i .
Py = o (VB D) — g B (v, 1) 2 NV — Vi) ")

on (Vo, Ve) x (0, T), where N(t) := —a22(Vg, t) > 0 and

p(-,t) is decreasing on [V, VE] Vt e [0, T].

Lemma

Let Vo € (—oo, VE) and T > 0. Let p be an universal sur-solution on [Vy, VE] x [0, T], and assume
that

p(v,0) = p(v,0) Vve[W,VF] andthat  p(Vo,t) = p(Vo,t) Vte[0,T].

Then, p > p on [V, VE] X [0, T] and if p(-,0) — p(:,0) non idendically equal to 0, then p > p on
(Vo, VF) x (0, T].
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Sur-solution method.

We construct two classes of universal sur-solution

°
exp(t) pour v < Vg,
P(v,t) = 2

exp(t) V‘,/:F:‘)’H pour Vg < v < Vg,

@ We consider Q; and @ solutions of

_ao1, —VQ1 =a On(VH7 VF)7 01(VF):O7
—al; —vQe =0  on (0, Vg), Q(VR) = Qi(VR), (4)

G

We define Q on [0, V] equal to Q; on [Vg, Ve] and equal to Qs on [0, Vg].
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Sursolution Method.

Strategy

e Via a change of variable, we reduce our equation to the linear heat
equation on a domain which depends on time and this outside the
singularity at v = Vp.

o We use the 2 universal sur-solutions and the regularizing effect on the heat
equation to prove that the solution is under the universal sur-solution SQ for
B big enough, where Q is prolongated by Q(0) on (—oc, 0)
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Sursolution Method.

Change of variable Let {y > 0and T > ;. We set
t 1
qly,7) = e~ (=h)p(e=(=h)y +/ bN(s)e~(=%)ds, t) et T = 562("’0).
[

The function g is solution of the heat Equation
0tq — adyyq =0

on Qy, which is the set of (y, 7) such that

L in(27)
%e*% <r< %ez(T*’O), y #£V2rVg — /2 bN(s + ty)e’ds
0

3 In(27)
and y < V21 Vg — /2 bN(s + tp)e’ds.
0
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Sursolution Method.

We arg by a contradiction argument
@ Assume that there exists ty > 1 such that for all 5 big enough (we can chose vy < 0)

p(vo, fo) = BQ(v)

@ Using that, on [0, fp], Q is a sursolution, we know that N is bounded.
@ We show that the cylinder Iy,

1 r2 A1
Vo—rhV+r—-———, = Q
[0 70+72 a2]C to

with )
1 1 r 1 1 Vg
< = —=)V t — <min(=(1—- 1), =—%—7—+— ).
r< 2exp( 2) (o e 2 < min (2( exp(—1)) 2V,q72ba,6’)

@ We use the regularizing effect

1 -
l9(vo. 5)I < Kar Mgl -
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Conclusion of instantaneous LIF model

@ Equation ill posed as soon b > 0 if the initial data is well chosen.

@ If b > 0is small enough and the initial data well chosen, exponential convergence to the
unique stationary state.

@ In the inhibitory case, uniform estimates on N(t) and exponential convergence for |b| small
enough.

@ Question of proof of convergence to the unique stationary state open, for the inhibitory case
and |b| large

@ Question of periodic solution is totally open.
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Equation with transmission delay

- 2 R
%(Vvt)+a% [(—V-l-bN(f—d))P(V,i)]—ogvg(v,t): (t)é(V— VH)7 VS \/,:7
D
Leaky Integrate and Fire noise neurons reset

R
R'(t) + — = N(1)

T
P(Ve,t) =0,  p(—o0,t)=0,  p(v,0)=p°(v)>0.

op

N(t) .= —oc—(Vg,t) > 0.
0] Uav( F, ) >
Principal properties ( Caceres, Perthame)

@ Still blow-up

@ Existence of odd stationary states for all b > 0 and unique stationary state for b < C, C > 0
small enough

@ Exponential convergence to a unique stationary without connectivity.
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Equation with delay

p

ot v, t) + i [( — v+ bN(t—d))p(v,t)] —a—(v t) = N(t)6(v — VR), v< Ve,
_f_/ —————

neurons reset

Leaky Integrate and Fire noise
p(Ve,)=0,  p(—o0,t)=0,  p(v,0)=p°(v) >0.
op
N(t) == —o—(Vg,t) > 0.
() o5, (VR t) 2

Principal properties (with Caceres, Roux et Schneider)
@ No more blow-up
@ Existence and uniqueness of a global classical solution

@ Exponential convergence to a unique stationary state as soon |b| small enough (with same
assumption as in the case without delay).

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Modeéle Leaky-Integrate and Fire. Idea of proof.
Equation with transmission delay

Equation with delay

Idea of proof for global existence :

@ Via a change of variable, we obtain the following implicit equation on the flux N.
@ Via a fix point argument, we obtain local existence

@ We construct a super solution to obtain uniform estimates and conclude to global existence
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Equation with delay

Construction of the supersolution for a given input N° :

p(v,t) = e'f(v), ¢ large enough
Construction of f
@ Lete > 0 with VetVe +e < Vpandlety € C2°(R) satisfying 0 < ¢ < 1 and
2 b

Vv Vv, Ve +V,
1/;51on(—oo,%)andd;zOon(g—i-s,—i-oo).
@ Let B > 0 such that
vt >0,vve (Vg VE), |—v+bNo(t)|<B
and § > 0 such thatad — B > 0.
© We chose

f=1on(—o0, Vg]

f(v) = €5 p(v) + <1 = (V)1 — &0~Y)) on (V, Vel.
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Equation with delay
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Equation with delay
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