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Some spatial mathematical models in neurosciences.

Spatial mathematical models in neurosciences

Spatial mathematical models : Those models appear to be very relevant to describe some
specific dynamics as for example

observation of some wave propagation on the brain (as for migraine for example)

http://www.edmontonneurotherapy.com/

Modeling of synaptic plasticity and phenomena of learning processes ?
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Some spatial mathematical models in neurosciences.

Shun-ichi Amari model

Shun-ichi Amari model (1977) :

∂t u(t , x) = −u(t , x) +

∫
Ω

K (x , y)F (u(t , y))dy + I(t , x).

u(t , x) models the average membrane potential or activity of the network

K (x , y) is a kernel which models the weight connectivity from the neuron at position y to the
neuron at position x .

F is a sigmoid fonction. On of the simplest example is the case where F is a Heaviside
function

There exists a huge literature around this pionnier work, with many extensions.
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Shun-ichi Amari model (1977).

Questions :
Does this model exhibit stationary states with different intensity of
activity with respect to the aera of the brain ?

Can we exhibit traveling wave with this model ?
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Some spatial mathematical models in neurosciences.

Study of the stationary states of Amari model.

Stationary equation in the homogenous case:

u(x) =

∫
Ω

K (x − y)F (u(y))dy + h.

Choice of the kernel :
We often use a ”mexican hat”

But we can perform also studies for example with only excitatory weights
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Some spatial mathematical models in neurosciences.

Study of the stationary states of Amari model.

As, a neuron at position x receive the activity of a neuron at position y , only if u(t , y) > 0, we
define ”the excited region” of the brain as follows

Definition

The excited region of a stationary state E(u) is given by

E(u) = {x ∈ R, such that u(x) > 0.}.

We can then expect to have four type of stationary states

1) Stationary states where there do not exists excited region

2) Stationary states with only excited regions

3) Stationary states with a localized excited region

4) Stationary states of wave type of speed 0.

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Some spatial mathematical models in neurosciences.

Stationary states for cases 1) and 2).

Case with no excited region. We must have

u(x) = h, that is h ≤ 0.

Case with only excited region. We must have

u(x) =
∫ +∞

−∞
w(x − y)dy + h > 0, that is h > −

∫ +∞

−∞
w(y)dy = −2W∞.
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Stationary states with local excited regions

Stationary states with local excited regions.
We search regular solutions such that u(x) > 0 on (a, b) and u(x) ≤ 0, else.

By invariance by translation, we can assume that (a, b) is of the form (0, a) with a > 0.

We have existence of a stationary state with local excited region iff

h < 0 and W (a) = −h.

where W (x) :=

∫ x

0
w(y)dy .
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Stationary states of wave type of speed 0.

Stationary states with local excited regions.
We search regular solutions such that u(x) > 0 on (0,+∞) and u(x) < 0 on (−∞, 0).

We have existence of a stationary state with of wave type of speed 0 iff

h < 0 and W∞ = −h.
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Evolution dynamic

The evolution of neural fields models is widely studied. One of the first main
questions that we can set are

Is there traveling wave ?

What is the behavior of the solution with respect to the initial data ?

Does we converge to a fully excited region ? (invasion phenomena)

Does we converge to the extinction of activity ?

Does we converge to more complex patterns as periodic solutions or locally excited solutions ?
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Evolution dynamic

Study of traveling waves

There is a very large class of models which exhibit traveling waves.

One of the reference model which exhibit this dynamic is the Fisher KPP
Equation (explicit solutions)

The case of neural fields may be complex

There are some specific cases where we can make explicit computations
(see for example Faye and Kilpatrick).
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The Fisher KPP Equation
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The Fisher KPP Equation

The Fischer KPP Equation (d = 1 with analatycal computations)

∂t u(t , x)− ∂xx u(t , x) = f (u(t , x))

with, for 0 < θ < 1

f (y) = 0 if y < θ and f (u) = (1− u) if θ < y ≤ 1.

Traveling wave

There exists a unique c∗ and a unique decreasing function v with v(0) = θ, v(−∞) = 1,
v(+∞) = 0 and such that v(x − c∗t) is solution of the Fischer KPP equation.

In the above example, the speed of propagation is constant.

There are some example in biology where we search non constant speed of propagation.

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Some spatial mathematical models in neurosciences.

Traveling wave (with non constant speed of propagation

Example with non constant speed of propagation : cane toads in Australia (O. Benichou, E.
Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, and R. Voituriez)
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Traveling wave with non constant speed of propagation

Example with non constant speed of propagation : cane toads in Australia (O. Benichou, V.
Calvez, N. Meunier and R. Voituriez)

A few cane toads where introduced in Austria in the 1930th

The speed of propagation observed is bigger than the constant speed of propagation
predicted by classical Fisher KPP equations.

Taking into account that, with time cane toads gets bigger and smaller, a new model has been
proposed.

This model include a new variable of morphology : the coefficient of diffusion of the cane toads
depends on this parameter.

This allows to recover the observations
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Traveling wave for neural field model

To construct explicit solutions, we consider the following neural fields model (Faye and Kilpatrick)

u′(t , x) = −u(t , x) +

∫ +∞

y=−∞
K (x − y)H(u(y)−

1
4

)dy , K (x) =
1
2

e−|x|.

The active region is given by the set of positions x such that u(t , x) > 1
4

The inactive region is given by the set of positions x such that u(t , x) ≤ 1
4 .

We can again study the steady states and we see the emergence of different patterns (as
constant solutions, bumps, periodic solution).

Traveling wave (Faye and Kilpatrick)

There exists a unique c > 0 and a decreasing function v with v(0) = 1
4 v(−∞) = 1, v(+∞) = 0

with v(x − ct) solution of the neural field equation.

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Some spatial mathematical models in neurosciences.

Propagation or asymptotic extinction of the activity

To understand the behavior of the solution with respect to the initial data, we again consider the
following neural fields model (Faye and Kilpatrick)

Behavior with respect to the initial data (Faye and Kilpatrick)

Consider a smooth initial data u0, even (u0(x) = u0(−x)) with u′0 > 0 if x < 0 and u′0 < 0 if x > 0.
Assume that ` > 0 such that u0(`) = 1

4 . Then the following holds

If ` > W−1( 1
4 )/2, then u → 1 locally uniformly on R

If ` < W−1( 1
4 )/2, then u → 0 locally uniformly on R

If ` = W−1( 1
4 )/2, then u converges to a bump function.
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How the brain learn ?

How the brain learn ? :

Since the ends of the XIX century, the notion of plasticity synaptic emerges

The brain is always remodeling with respect to the stimuli that we receive,
our experience

This remodeling is made, in particular via the emergence of new
connections (or depletions of connections) and via the change of strength
of interconnections between the neurons
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How the brain learn

from W. M. Jenkins, M. M. Merzenich, M. T. Ochs, T. Allard and E. Guic-Robles, ÒFunctional reorganization of primary somatosensory cortex in adult owl

monkeys after behaviorally controlled tactile stimulationÓ

Questions

What are the rules which are behind those remodeling ?
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How the brain learn ?

The Hebbian rule :

”Neurons that fire together, wire together” (Hebb, 1904-1985)
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How the brain learn

Typical simple modeling including the Hebbian rule :

u′(t , i) = −u(t , i) +
N∑

j=1

Kij(t)S(u(t , j) + I(t , i)

1
ε

K ′ij(t) = −αKij(t) + F (Kij(t))u(t , i)u(t , j).

D. Salort, LBCQ, Sorbonne University, Paris Mathematical modeling in biology.



Some spatial mathematical models in neurosciences.

How the brain learn ?

The Spike Time Dependent plasticity rule :

The connections are reenforced if the presynaptic neuron discharge before the post-synaptic
neuron.

The opposite happens if the postsynaptic neuron discharge before the presynaptic neuron

no or very low synaptic modification if the delay between spikes are to long.
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How the brain learn

Typical simple modeling including the Hebbian rule :

u′(t , i) = −u(t , i) +
N∑

j=1

Kij(t)S(u(t , j) + I(t , i)

1
ε

K ′ij(t) = C1ui(t)uj ? g(t)− C2uj(t)ui ? g(t)

where typically,
g(t) = Ce−αtH(t).
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