Summerschool in Aveiro (Sept. 2018), Ernst Hairer

o Part I. Geometric numerical integration
» Hamiltonian systems, symplectic mappings, geometric integrators,
Stormer—Verlet, composition and splitting, variational integrator

» Backward error analysis, modified Hamiltonian, long-time energy
conservation, application to charged particle dynamics

o Part Il. Differential equations with multiple time-scales

» Highly oscillatory problems, Fermi—Pasta—Ulam-type problems,
trigonometric integrators, adiabatic invariants

» Modulated Fourier expansion, near-preservation of energy and of
adiabatic invariants, application to wave equations
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Lecture 2. Backward error analysis

© Modified differential equation
@ Construction of the modified differential equation
@ Hamiltonian systems — symplectic methods

© Long-time error analysis
@ Near-energy preservation
@ Linear error growth for integrable systems

© Application to charged particle dynamics
@ Basic properties
@ Main result - energy preservation
@ Numerical experiments
@ Proof — backward error analysis
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Modified differential equation

Given a differential equation y = f(y) and a method y,+1 = ®p(vn)

’ Yo, )/1, Y2, }/3,---‘
{ac,’(. ’y 2h) ‘
i A

Find a modified differential equation y = fp(y) of the form

y =1fly) +hha(y) + hh(y) + Pha(y) + ... |

such that its solution y(t) satisfies formally  y, = y(nh) .
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Construction of the modified differential equation
Numerical method for y = f(y)

y1 = ®n(y0) = yo + hf(y0) + h*da(yo) + h*ds(y0) + - .- |

Ansatz for the modified equation

y=fy)+ho(y) + Ph)+...,  y(0)=y|

Taylor series expansion of its solution y(t) at t = h
~ ~ 2 ~ 3 ~
y(h) = yo+hy'(0)+ 5 y"(0) + % y"(0) + ...
= yo+h(f+hb+hmh+...),

b B ) (P bt )+
Comparison of like powers of h yields

d(y) = hly)+ %f'f(y)
d(y) = By)+ 5 (Fh+HE)(y) + 5 (F/(F, F) + ) (y)
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Modified equations for the pendulum equation

explicit Euler:

a\ _( p h(sing h_2 —4 pcosq

implicit Euler: same equation with h replaced by —h.

symplectic Euler (explicit in g, implicit in p):

q\ _ P h (—sing h_2 2 pcosq
<I5> - <—sinq>+2(pcosq>+12 ((p2—2cosq)sinq Tt

symplectic Euler (explicit in p, implicit in g):

same equation with h replaced by —h
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Quadrature

Problem: y=1f(t), y(0)=0
Method:  y,(1 =y, + *(f(l“n+1) + f(fn))

The modified differential equation is of the form

y = f(t) + hbyf'(t) + W?baf"(t) + h3bsf"(t) + .. -

The coefficients can be obtained by putting f(t

) =
(eh —1)(1+ hby + h?by +...) = B(e +1)J

This is the generating function for the Bernoulli numbers; we have

b =~ c(2m) 7k

Conclusion. As soon as f(K)(t) ~ k! M R=k, the series of the modified
equation diverges for all h # 0.
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Hamiltonian systems

Consider a Hamiltonian system

y=J"'VH(y) |

and a one-step method

Yn+1 = Pn(yn) l
What can be said about its modified differential equation?

Example (pendulum)
explicit and implicit Euler: modified equation is not Hamiltonian
symplectic Euler: modified equation is Hamiltonian with

1 h h2
Hi(p,q) = 5 P —cosq—Epsqur—(p —cosq)cosq+-.. J

Is this true in general?
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Modified equation for symplectic methods

Theorem

Consider
e a Hamilton system with smooth H: U — R
e a symplectic integrator ®(y)

Then, the vector fields fi(y) of the modified differential equation are
Hamiltonian, i.e., we have fi(y) = J-1VH(y).

There are several proofs for this result.

Local existence of the Hamiltonian Hy(y)
simple proof by induction without additional assumption
idea goes back to Moser (1968),
Benettin & Giorgilli (1994), Tang (1994)

Global existence of the Hamiltonian H(y)
needs additional assumptions (satisfied by RK methods)
proof via generating functions: Murua (1994)
algebraic proof for B-series integrators: Hairer (1994)

Ernst Hairer (Université de Genéve) Geometric Numerical Integration September 10-14, 2018 9 /35



Proof by induction (local existence)
We prove by induction on N that

y = f(y)+ht(y)+...+h" " u(y) (1)

is Hamiltonian. This is obviously true for N = 1.
Assume that (1) is Hamiltonian for N. Its flow ¢p () satisfies

Oh(y) = ennly) +hV v (y) + O(AVH2).
Since ®p(y) and @n ¢(y) are symplectic, it holds
J o= Oy) oLy = ..
= J+ (R )T+ I () + O(N+2),

so that J f,(,_H(y) is symmetric. The integrability lemma implies the local
existence of Hy11(y) such that Jfyi1(y) = VHy11(y). O
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Modified equation for symmetric methods

Theorem (adjoint method)

a) Let f;(y) be the coefficient functions of the modified differential
equation for a method ®,(y). The coefficient functions of the modified
equation for the adjoint method ®;(y) = <D::,l,(y) are then given by

() = (1Y 6(y).

b) The modified equation of a symmetric method has an expansion in even
powers of h.

v

Proof.
The solution y(t) of the modified equation for ®} has to satisfy

y(t) = d_p(y(t+ h)) and hence  y(t —h) = d_,(y(t))

Replacing h by —h, we get the solution of the modified equation for the
method . []

V.

Ernst Hairer (Université de Genéve) Geometric Numerical Integration September 10-14, 2018 11 /35



Structure preservation

There are many similar results that can all be proved by the same
induction argument.

e divergence-free vector fields y = f(y), i.e., divf(y) =0, and
volume-preserving flows,

@ Poisson systems y = B(y)VH(y) and Poisson mappings,
@ vector fields on a manifold and flows on the manifold,

@ special case, where the manifold is a Lie group,

o differential equations with first integrals.

Always when a numerical integrator shares a characteristic property of the
exact flow, the modified differential equation retains the structure of the
problem.
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Lecture 3. Backward error analysis

© Long-time error analysis
@ Near-energy preservation
@ Linear error growth for integrable systems
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Estimates of the local error

Since the modified equation is in general divergent, we have to truncate it.
What is the induced error?

Theorem (local error estimation)

Denote by pn +(y) the flow of the truncated modified differential equation
y = f(y) + hay) + Bh(y) + ...+ BN (),

then there exists a constant Cn(yo) such that for h < hg

[Ph(¥0) — on,n(¥0)ll < Cnl(yo) AVTE.

The proof is trivial. One even knows that
®u(y0) — en,n(v0) = AV vpa(yo) + O(AV2).

It is less trivial to study the dependence of Cy(yo) on N.
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Exponentially small error estimates

Typically (e.g., when f(y) is real-analytic) one cannot expect a better
estimate than

Culxo) < a(w)" |

Optimal choice of N:
the estimate

Cn(yo)ANTL < ha(whN)N
is minimal, when

N = (whe)™L.

This choice of N yields

[Ph(v0) — enp(¥0)l| < hae™?/h with = (we)~! > 0|
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Estimation of the global error

To get estimates of the global error, one has to know something about the
error propagation of the modified differential equation.

o Typical situation: if we know that
18e(y0) — Pe(20)]l < c " [lyo — 2o,
then we have for t = nh

lyn — Be(vo)|| < ae™?/h te‘“tJ

exponentially close on intervals of length O(1).

o Integrable systems: if we know that
[6¢(v0) — @e(20)l| < (a+ bt) [lyo — 2o,
then we have for t = nh

lyn—@e(yo)ll < ave™/" (at+bt?/2) |

exponentially close on exponentially long time intervals.
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Near-energy preservation

Theorem

Consider a symplectic method of order r with global modified Hamiltonian

H(p,q) = H(p,q) + " Hs1(p, q) + ... + KN " Hy(p, q).

Then, the numerical solution satisfies
H(Pas an) = H(po.q0) + O(K) for nh< &/

as long as the numerical solution stays in a compact set.

Proof. We have |H(pn, gn) — H(po, go)| < C nhe=/h.

conservation of energy
(Kepler problem)

.02

.01
i symplectic Euler, h = 0.001

explicit Euler, h = 0.0001
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Completely integrable systems

Consider a Hamiltonian system

y=J"'VH(y) |

Definition
A Hamiltonian system with d degrees of freedom (H : M — R with an
open set M C RY x Rd) is called completely integrable if there exist

smooth functions F; = H, F5, ..., Fy such that
o Fi,...,Fy are in convolution, i.e., {F;, F;} = VFTJ7IVF; =0,
@ The gradients of Fq,..., F4 are everywhere linearly independent,

@ The solution trajectories of the Hamiltonian systems with F;
(i=1,...,d) exist for all times and remain in M.

Note that the first condition implies that all function F; are first integrals
(conserve quantities) of the Hamiltonian system.
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Completely integrable systems — examples

Hamiltonian systems with one degree of freedom,
e.g., harmonic oscillator, mathematical pendulum

Kepler problem
first integrals are: energy H and angular momentum L = gq1p> — gop1
n
Toda lattice with H(p, q) = Z(% p2 + exp(qx — qk+1))
k=1
related to a Lax pair L = [B(L), L] with skew-symmetric B(L)

Ablowitz-Ladik discrete nonlinear Schrodinger equation

Volterra lattices
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Arnold—Liouville Theorem

For a completely integrable Hamiltonian system there exists a symplectic

transformation
(p,q) = (a,0) (2m-periodic in 6)

to action-angle variables such that the Hamiltonian becomes
H(p,q) = H(y(a,0)) = K(a).

In the action-angle variables, the system becomes
é;ZO, é;zw;(a), iZl,...,d
with wi(a) = 0K /0a;(a), and can be solved directly
ai(t) = ajo, 0i(t) = bio + wi(ao)t
(p(t), q(t)) = ¥ (a0, bo + w(ao)t)

(periodic or quasi-periodic flow).

so that
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Linear error growth for integrable systems

Assumptions

e completely integrable Hamiltonian system with real-analytic
Hamiltonian, action variables a = I(p, q)

e symplectic integrator of order r
e some technical assumptions.

Then, there exist constants C, hg such that for h < hg and for
t = nh < h™" the numerical solution satisfies

(P, gn) — (p(t), q(t))|| < Cth" (linear error growth)
11(pPn,an) — 1(po, go)|] < Ch" (near-conserv. of actions)

Remark. The same statement is true if we replace
“Hamiltonian” by “reversible” and
“symplectic” by “symmetric”.
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Numerical experiment

Kepler problem (excentricity e = 0.6)

initial values, such that the orbit is elliptic with period 27

global error of the solution

epr|C|t Euler, h = 0.0001

o A oy o0

symplectic Euler, h = 0.002

50 100

Explicit Euler: quadratic error growth

Symplectic Euler: linear error growth
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Lecture 2. Backward error analysis

© Application to charged particle dynamics
Basic properties

@ Main result - energy preservation

@ Numerical experiments

@ Proof — backward error analysis
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Charged particle dynamics

Newton's Second Law together with Lorentz’s force equation yields
(assuming suitable units)

X = xx B(x)+ E(x) |

where E(x) is the electric field and B(x) the magnetic field.

Boris algorithm

The most simple discretization is

h
Xnt1—2Xp+Xp—1 = §(Xn+l - Xn—l) X B(Xn) + th(Xn)J

J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code.
Proc. of 4th Conf. on Numer. Simul. of Plasmas (Nov. 1970)
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Properties of the differential equation
We write

5&:)’(><B(X)+E(X)J as )\; z ZXB(x)—i—E(X)J

@ the flow ¢:(x,v) is volume preserving:
p(pe(K)) = u(K)  forall t;
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Properties of the differential equation
We write

v = vxB(x)+ E(x)

¥ = xxBR)+EX) | = X T J

e the flow ¢:(x, v) is volume preserving:

1(ee(K)) = n(K) for all t;

Proof. Divergence of the vector field = 0, because

v x B(x) = B(x) v with a skew-symmetric matrix B(x).
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Properties of the differential equation
We write

v = vxB(x)+ E(x)

¥ = xxBR)+EX) | = X T J

e the flow ¢:(x, v) is volume preserving:

1(ee(K)) = n(K) for all t;

o if E(x) = —VU(x), the energy

H(x,v) = %vTv + U(x) is preserved;
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Properties of the differential equation
We write

v = vxB(x)+ E(x)

¥ = xxBR)+EX) | = X T J

e the flow ¢:(x, v) is volume preserving:

1(ee(K)) = n(K) for all t;

o if E(x) = —VU(x), the energy

H(x,v) = %vTv + U(x) is preserved;

LH(x(t), v(1) = vTv + xTVU(x)
= vT (v x B(x) = VU(x)) + vTVU(x) = 0

Proof.
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Properties of the differential equation
We write

j&:ka(x)+E(X)J as )\; z 5><B(x)+E(X)J

e the flow ¢:(x, v) is volume preserving:

1(ee(K)) = n(K) for all t;

o if E(x) = —VU(x), the energy

H(x,v) = %vTv + U(x) is preserved;

o if E(x) = —VU(x) and B(x) = V4 x A(x), the differential equations
are the Euler—Lagrange equations with

L(x,v) = 2vTv — U(x) + A(x)Tv
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Properties of the differential equation
We write

j&:)’(xB(x)+E(X)J as )\; z 5><B(X)—|—E(X)J

[ AW 1

o th~s

4(Vul) = Vil
%(v + A(X)) = -V, U+ V4 (A(X)TV)
o if and the statement follows from

Ve(A(x)Tv) — LAx) = (A(x)T = A(x))v = v x B(x)

o if E(x) = —VU(x) and B(x) = V4 x A(x), the differential equations
are the Euler—Lagrange equations with

L(x,v) = 2vTv — U(x) + A(x)Tv
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Properties of the differential equation
We write

j&:ka(x)+E(X)J as )\; z 5><B(x)+E(X)J

e the flow ¢:(x, v) is volume preserving:

1(ee(K)) = n(K) for all t;

o if E(x) = —VU(x), the energy

H(x,v) = %vTv + U(x) is preserved;

o if E(x) = —VU(x) and B(x) = V4 x A(x), the differential equations
are the Euler—Lagrange equations with

L(x,v) = 2vTv — U(x) + A(x)Tv
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Boris algorithm as one-step method

L

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)
Vn = 3 (Xn+1 - Xn—l)
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Boris algorithm as one-step method

L

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)
Vn = 3 (Xn+1 - Xn—l)

With Vni1/2 = %(XnJrl - Xn) = Vp+ g Vp X B(Xn) + gE(Xn)J we have

Vnt1/2 = Vp-1/2 = % (Vng1/2+ Va—1/2) X B(xn) +h E(x,,)J
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Boris algorithm as one-step method

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)
Vn = ﬁ (Xn+1 - Xn—l)

With Vnt1/2 = %(XnJrl - Xn) = Vp+ g Vp X B(Xn) + gE(Xn)J we have

Vnt1/2 = Vp-1/2 = % (Vng1/2+ Va—1/2) X B(xn) +h E(x,,)J

and the map (xn, Vy—1/2) = (Xa+1, Vpy1/2) is implemented as

+

V—1/2
-
Vat1/2 = Vo-1/2

Vnt1/2 =

Xn+1l =

= Vp-1/2+ % E(xn)

3 (Vn_+1/2 + V:_l/z) x B(xn)
Vo1 T g E(xn)

Xn+ hvay1/2

v

Ernst Hairer (Université de Genéve)
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Boris algorithm as one-step method

With the splitting

(- () ) 0] =

Wit
Xn+1 V. E B .E X
= Py 0Py 0P op
(Vn+1/2> h h/27"h =Yh/2 Vn—1/2
where pf and ¢} are the exact flows, and ®& is the discrete
and  flow (mid-point rule) for the vector field in the middle.
+ _ h
Vn_1/2 = Vp-1)2 + 2 E(Xn)
-t _ h(,- +
Var12 " Va2 T2 (Vn+1/2 + Vn—1/2) x B(xn)
— - h
Votr1/2 = Vo123 E(xn)
Xn+1l = Xn + h Vn+1/2
v
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Properties of the Boris algorithm

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)
Vn = ﬁ (Xn+1 - Xn—l)

e the mapping (xp, Vo—1/2 = (Xnt1, Vat1/2) is volume preserving.
Hence, the Boris method (xp, vn) — (Xnt+1, Va+1) is conjugate
to a volume preserving mapping.
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Properties of the Boris algorithm

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)

Vn = % (Xn+1 - Xn—l)

e the mapping (xp, Vo—1/2 = (Xnt1, Vat1/2) is volume preserving.
Hence, the Boris method (xp, vn) — (Xnt+1, Va+1) is conjugate
to a volume preserving mapping.

@ the Boris method is a variational integrator only if B(x) = Const.
(see Ellison & al., and part Il of the talk)

C. L. Ellison, J. W. Burby, and H. Qin, Comment on “Symplectic integration of
magnetic systems”: A proof that the Boris algorithm is not variational.

J. Comput. Phys. 301 (2015), 489-493
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Properties of the Boris algorithm

Xn+1 — 2Xp + Xp—1 = g (Xn+1 - anl) X B(Xn) = th(Xn)
Vn = % (Xn+1 - Xn—l)

e the mapping (xp, Vo—1/2 = (Xnt1, Vat1/2) is volume preserving.
Hence, the Boris method (xp, vn) — (Xnt+1, Va+1) is conjugate
to a volume preserving mapping.

@ the Boris method is a variational integrator only if B(x) = Const.
(see Ellison & al., and part Il of the talk)

@ What can be said about near energy preservation in the general case,
where B(x) is not a constant vector field?
This is the topic of the present talk.

C. L. Ellison, J. W. Burby, and H. Qin, Comment on “Symplectic integration of
magnetic systems”: A proof that the Boris algorithm is not variational.
J. Comput. Phys. 301 (2015), 489-493
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Energy preservation - main result

Theorem

Assume that at least one of the following conditions is satisfied
e the magnetic field B(x) = B is constant,
@ the scalar potential U(x) = %XT Qx + q ' x is quadratic,

and that the numerical solution (x, v,) of the Boris method stays in a
compact set. For every truncation index N, the energy
H(x,v) = 3vTv + U(x) is bounded as

|H(xn, vn) — H(x0, v0)| < Gnh® for nh< h2N

with C independent of n and h as long as nh < h=2N.

E. Hairer and Ch. Lubich, Energy behaviour of the Boris method for
charged-particle dynamics. BIT (2018)
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Energy preservation - main result

Theorem

Assume that at least one of the following conditions is satisfied
e the magnetic field B(x) = B is constant,
@ the scalar potential U(x) = %XT Qx + q ' x is quadratic,

and that the numerical solution (x, v,) of the Boris method stays in a
compact set. For every truncation index N, the energy
H(x,v) = 3vTv + U(x) is bounded as

|H(xn, vn) — H(x0, v0)| < Gnh® for nh< h2N

with C independent of n and h as long as nh < h=2N.

What happens if none of the above two conditions is satisfied?

E. Hairer and Ch. Lubich, Energy behaviour of the Boris method for
charged-particle dynamics. BIT (2018)
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Example 1: linear growth

We consider the error in the energy for 0
1
Ux)=xi =3+ od +xd+x,  Bl)=| O
T T Vg X3
x(0) =(0.0,1.0,0.1)", v(0) = (0.09,0.55.0.30) .
500

step size h = 0.001

Op
—500f

—1000
—1500F Tend = 30000
508 step size h = 0.002
500

—1000F

Tend = 30000

~1500F
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Example 2: random walk
We consider the error in the energy for
1 1
U)=x -G+ cxi+tx+x,  Bl)=5|xa+x

x(0) = (0.0,1.0,0.1) ", v(0) = (0.09,0.55.0.30) .

1000
500

500
~1000}

1000
500

=500
—-1000
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Backward error analysis (Boris algorithm)
For x, = y(nh) and t = nh the Boris algorithm reads

y(t+h)=2y(t)+y(t—h) = g (v(t+h)—y(t=h)) xB(y()) —thU(y(t))J

Expanding into powers of h and dividing by h? yields
h2 2

y+EY-|- (y‘+%}'/'+...)><5(y)—VU(y)J

Eliminating third and higher derivatives by differentiation
Y = yxB(y)+yxB(y)y—V2U(y)y +O(h*)

—VU(y) x B(y) +y x B'(y)y = V2U(y)y + O(h?)
gives the modified differential equation.
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Backward error analysis (Boris algorithm)
For x, = y(nh) and t = nh the Boris algorithm reads

y(t+h)=2y(t)+y(t—h) = g (v(t+h)—y(t=h)) xB(y()) —thU(y(t))J

Expanding into powers of h and dividing by h? yields

h? .. h? ...
JHo Y+ (y‘+€y+...)><8(y)—VU(y)J
Eliminating third and higher derivatives by differentiation
Y = yxB(y)+yxB(y)y—V2U(y)y +O(h*)

—VU(y) x B(y) +y x B'(y)y = V2U(y)y + O(h?)
gives the modified differential equation.

Similarly, we have v, = w(nh) for t = nh, where

W(©) = (e ) —y(e—m) =i+ 27+ Ty J
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Energy conservation - constant magnetic field
Consider the modified equation

2 2

y+f—2'y'+...= (y‘+%)'/'+...) X B(y)—VU(y)J

and take the scalar product with y. This gives
2 2

E(z 6

1. —+. h%, —... 1._+. h — ...
Zyly+ U(y)+ﬁ(yTy —EyTy) +> =—y' (¥ xB(y)) +
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Energy conservation - constant magnetic field
Consider the modified equation

2 2

y—i-ﬁ}/—l- <}7+%'}7+...>><B(y)—VU(y)J

and take the scalar product with y. This gives

d /1 1. 1. R
dt(zy y+HUW+ Y -5y y)+...)_€y (yxB(y))+...J

Theorem

If the magnetic field B(x) = B is constant, there exist Exj(x, v) such that

d (1 _ |
= (59777 + U0) + Py, 3) + ..+ ¥V Ean(y. ) ) = O(nM+2)

along solutions (y,y) of the modified differential equation.
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Energy conservation - constant magnetic field
Consider the modified equation

y+£'y'+...= (}'/Jrh;VJr---) X B(y)—VU(y)|

and 4 because y (Y xB(y) =y (¥ xB) = a(yT(yx B))

2 2
;t(ly y+ U(y)+%(y'W—%yTy)+...) = h—yT(y'x B(y))+...J

Theorem

If the magnetic field B(x) = B is constant, there exist Exj(x, v) such that

d (1 _ |
= (577 + U0 + By, 5) + .. + BV Ean(y, 7)) = O(W*N+2)

along solutions (y,y) of the modified differential equation.
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Energy conservation - quadratic electric potential
Consider the modified equation with U(x) = 3 x" Qx + ¢ x

2 2

+f—2y+ (y'+%y'+...)><8(y)—VU(Y)J

and take the scalar product with (y + %f}'/' +...). This gives

2 2

1 B2 ...
YV i)+ )2——}/TVU(y)+

h
y y+U(y)+ 5

12( 2

ROA
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Energy conservation - quadratic electric potential
Consider the modified equation with U(x) = 3 x" Qx + ¢ x

2 2

y+m Y+ ()7+%)'/'+.--)><B(y)—VU(Y)J

and take the scalar product with (y + %2}7 +...). This gives

d /1. ¢ h? 1 R g
dt< y y+U(y)+12(y Y+2y Ty +.. )——6)/ VU(y)+...J

Theorem

If U(x) = %XTQX + q ' x, there exist Ej(x, v) such that

d /1 ' |
dt( 1Y+ UQy) + By, 9) + ..+ PV Ean(y, 7)) = O(HN+2)

along solutions (y, w) of the modified differential equation.
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Energy conservation - quadratic electric potential
Consider the modified equation with U(x) = 3 x" Qx + ¢ x

2 2
V+—Y +...= (y+h—y'+...\ X B(y)—VU(y)|

because Y VU(y) = }/T(Qy-i-q) dt( T Qy— yTQy-i-qu)

arl|

d 1'T' h2 1 h2---‘|'
— (= -+ L 4 = — VU + ...
dt<2y y+Uly)+ 12(y y 2)/ Y) ) 6 y (v) J

Theorem

If U(x) = %XTQX + q ' x, there exist Ej(x, v) such that

d /1 ' |
dt( JTY+ Uy) + BBy, 9) + ..+ PV Ean(y, 7)) = O(H+?)

along solutions (y, w) of the modified differential equation.
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Explanation of the numerical experiments

The numerical solution satisfies (formally) x, = y(nh), v, = w(nh), where

%(H(Y; W)+h2F(y, w)+.. ) _ th(y7 W)+O(h4)J

e integration shows that there is typically a linear drift of size th’>M,
where M is an upper bound of G(y, w),

e if the solution (y(t), w(t)) is ergodic on an invariant set A with
invariant measure p, then

1 t
lim / G(y(s),w(s))ds = / G(x,v)u(d(x,v))
0 A
» if the integral to the right is non-zero, we will have a linear drift;

» if it is zero, we will have a random walk: the error behaves

like O(h2) + O(VEH?).
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