# Summerschool in Aveiro (Sept. 2018), Ernst Hairer

## • Part I. Geometric numerical integration

- Hamiltonian systems, symplectic mappings, geometric integrators, Störmer–Verlet, composition and splitting, variational integrator
- Backward error analysis, modified Hamiltonian, long-time energy conservation, application to charged particle dynamics

## • Part II. Differential equations with multiple time-scales

- Highly oscillatory problems, Fermi–Pasta–Ulam-type problems, trigonometric integrators, adiabatic invariants
- Modulated Fourier expansion, near-preservation of energy and of adiabatic invariants, application to wave equations

# Lecture 2. Backward error analysis

## 1 Modified differential equation

- Construction of the modified differential equation
- Hamiltonian systems symplectic methods

## 2 Long-time error analysis

- Near-energy preservation
- Linear error growth for integrable systems

## 3 Application to charged particle dynamics

- Basic properties
- Main result energy preservation
- Numerical experiments
- Proof backward error analysis

# Modified differential equation

**Given** a differential equation  $\dot{y} = f(y)$  and a method  $y_{n+1} = \Phi_h(y_n)$ 



**Find** a modified differential equation  $\dot{y} = f_h(y)$  of the form

$$\dot{y} = f(y) + h f_2(y) + h^2 f_3(y) + h^3 f_4(y) + \dots$$

such that its solution  $\widetilde{y}(t)$  satisfies formally  $y_n = \widetilde{y}(nh)$ .

Construction of the modified differential equation Numerical method for  $\dot{y} = f(y)$ 

$$y_1 = \Phi_h(y_0) = y_0 + hf(y_0) + h^2 d_2(y_0) + h^3 d_3(y_0) + \dots$$

Ansatz for the modified equation

$$\dot{y} = f(y) + hf_2(y) + h^2f_3(y) + \dots, \qquad y(0) = y_0$$

Taylor series expansion of its solution  $\tilde{y}(t)$  at t = h

$$\begin{aligned} \widetilde{y}(h) &= y_0 + h \widetilde{y}'(0) + \frac{h^2}{2!} \widetilde{y}''(0) + \frac{h^3}{3!} \widetilde{y}'''(0) + \dots \\ &= y_0 + h \big( f + h f_2 + h^2 f_3 + \dots \big)_0 \\ &+ \frac{h^2}{2!} \big( f' + h f'_2 + \dots \big) \big( f + h f_2 + \dots \big)_0 + \dots \end{aligned}$$

Comparison of like powers of h yields

. . .

$$d_2(y) = f_2(y) + \frac{1}{2!}f'f(y)$$
  

$$d_3(y) = f_3(y) + \frac{1}{2!}(f'f_2 + f'_2f)(y) + \frac{1}{3!}(f''(f, f) + f'f'f)(y)$$

Modified equations for the pendulum equation

explicit Euler:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} p \\ -\sin q \end{pmatrix} + \frac{h}{2} \begin{pmatrix} \sin q \\ p\cos q \end{pmatrix} + \frac{h^2}{12} \begin{pmatrix} -4 \ p\cos q \\ (p^2 + 4\cos q)\sin q \end{pmatrix} + \dots$$

**implicit Euler:** same equation with h replaced by -h.

symplectic Euler (explicit in q, implicit in p):

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} p \\ -\sin q \end{pmatrix} + \frac{h}{2} \begin{pmatrix} -\sin q \\ p\cos q \end{pmatrix} + \frac{h^2}{12} \begin{pmatrix} 2p\cos q \\ (p^2 - 2\cos q)\sin q \end{pmatrix} + \dots$$

symplectic Euler (explicit in p, implicit in q): same equation with h replaced by -h

# Numerical illustration: pendulum $\dot{q} = p$ , $\dot{p} = -\sin q$



expl.in p, impl. in q

expl.in q, impl. in p

## Quadrature

**Problem:**  $\dot{y} = f(t), \quad y(0) = 0$ **Method:**  $y_{n+1} = y_n + \frac{h}{2}(f(t_{n+1}) + f(t_n))$ 

The modified differential equation is of the form

$$\dot{y} = f(t) + hb_1f'(t) + h^2b_2f''(t) + h^3b_3f'''(t) + \dots$$

The coefficients can be obtained by putting  $f(t) = e^t$ :

$$(e^h - 1)(1 + hb_1 + h^2b_2 + \ldots) = \frac{h}{2}(e^h + 1)$$

This is the generating function for the Bernoulli numbers; we have

$$b_k \approx c \, (2\pi)^{-k}$$

**Conclusion.** As soon as  $f^{(k)}(t) \approx k! M R^{-k}$ , the series of the modified equation diverges for all  $h \neq 0$ .

# Hamiltonian systems

Consider a Hamiltonian system

$$\dot{y} = J^{-1} \nabla H(y)$$

and a one-step method

$$y_{n+1} = \Phi_h(y_n)$$

What can be said about its modified differential equation?

## **Example** (pendulum)

*explicit and implicit Euler:* modified equation is **not** Hamiltonian *symplectic Euler:* modified equation is Hamiltonian with

$$H_h(p,q) = \frac{1}{2} p^2 - \cos q - \frac{h}{2} p \sin q + \frac{h^2}{12} (p^2 - \cos q) \cos q + \dots$$

Is this true in general?

# Modified equation for symplectic methods

Theorem

Consider

- a Hamilton system with smooth  $H: U \to \mathbb{R}$
- a symplectic integrator  $\Phi_h(y)$

Then, the vector fields  $f_k(y)$  of the modified differential equation are Hamiltonian, i.e., we have  $f_k(y) = J^{-1} \nabla H_k(y)$ .

There are several proofs for this result.

Local existence of the Hamiltonian  $H_k(y)$ 

simple proof by induction without additional assumption idea goes back to Moser (1968), Benettin & Giorgilli (1994), Tang (1994)

Global existence of the Hamiltonian  $H_k(y)$ 

needs additional assumptions (satisfied by RK methods) proof via generating functions: Murua (1994) algebraic proof for B-series integrators: Hairer (1994)

# Proof by induction (local existence)

We prove by induction on N that

$$\dot{y} = f(y) + hf_2(y) + \ldots + h^{N-1}f_N(y)$$
 (1)

is Hamiltonian. This is obviously true for N = 1. Assume that (1) is Hamiltonian for N. Its flow  $\varphi_{N,t}(y)$  satisfies

$$\Phi_h(y) = \varphi_{N,h}(y) + h^{N+1}f_{N+1}(y) + \mathcal{O}(h^{N+2}).$$

Since  $\Phi_h(y)$  and  $\varphi_{N,t}(y)$  are symplectic, it holds

$$J = \Phi'_{h}(y)^{\mathsf{T}} J \Phi'_{h}(y) = \dots$$
  
=  $J + h^{N+1} (f'_{N+1}(y)^{\mathsf{T}} J + J f'_{N+1}(y)) + \mathcal{O}(h^{N+2}),$ 

so that  $J f'_{N+1}(y)$  is symmetric. The integrability lemma implies the local existence of  $H_{N+1}(y)$  such that  $J f_{N+1}(y) = \nabla H_{N+1}(y)$ .

# Modified equation for symmetric methods

## Theorem (adjoint method)

a) Let  $f_j(y)$  be the coefficient functions of the modified differential equation for a method  $\Phi_h(y)$ . The coefficient functions of the modified equation for the adjoint method  $\Phi_h^*(y) = \Phi_{-h}^{-1}(y)$  are then given by

$$f_j^*(y) = (-1)^{j+1} f_j(y).$$

b) The modified equation of a symmetric method has an expansion in even powers of h.

## Proof.

The solution  $\tilde{y}(t)$  of the modified equation for  $\Phi_h^*$  has to satisfy

$$\widetilde{y}(t) = \Phi_{-h}(\widetilde{y}(t+h))$$
 and hence  $\widetilde{y}(t-h) = \Phi_{-h}(\widetilde{y}(t))$ 

Replacing h by -h, we get the solution of the modified equation for the method  $\Phi_h$ .

## Structure preservation

There are many similar results that can all be proved by the same induction argument.

- divergence-free vector fields  $\dot{y} = f(y)$ , i.e., div f(y) = 0, and volume-preserving flows,
- Poisson systems  $\dot{y} = B(y)\nabla H(y)$  and Poisson mappings,
- vector fields on a manifold and flows on the manifold,
- special case, where the manifold is a Lie group,
- differential equations with first integrals.

Always when a numerical integrator shares a characteristic property of the exact flow, the modified differential equation retains the structure of the problem.

# Lecture 3. Backward error analysis

## Modified differential equation

- Construction of the modified differential equation
- Hamiltonian systems symplectic methods

## Long-time error analysis

- Near-energy preservation
- Linear error growth for integrable systems

## 3 Application to charged particle dynamics

- Basic properties
- Main result energy preservation
- Numerical experiments
- Proof backward error analysis

# Estimates of the local error

Since the modified equation is in general divergent, we have to truncate it. What is the induced error?

Theorem (local error estimation)

Denote by  $\varphi_{N,t}(y)$  the flow of the truncated modified differential equation

$$\dot{y} = f(y) + hf_2(y) + h^2f_3(y) + \ldots + h^{N-1}f_N(y),$$

then there exists a constant  $C_N(y_0)$  such that for  $h \le h_0$ 

$$\|\Phi_h(y_0) - \varphi_{N,h}(y_0)\| \le C_N(y_0) h^{N+1}$$

The proof is trivial. One even knows that

$$\Phi_h(y_0) - \varphi_{N,h}(y_0) = h^{N+1} f_{N+1}(y_0) + \mathcal{O}(h^{N+2}).$$

It is less trivial to study the dependence of  $C_N(y_0)$  on N.

# Exponentially small error estimates

Typically (e.g., when f(y) is real-analytic) one cannot expect a better estimate than

$$C_N(y_0) \le lpha(\omega N)^N$$

Optimal choice of N: the estimate

$$C_N(y_0)h^{N+1} \le h\alpha(\omega hN)^N$$

is minimal, when

$$N = (\omega h e)^{-1}.$$

This choice of N yields

$$\|\Phi_h(y_0) - \varphi_{N,h}(y_0)\| \le h\alpha \, e^{-\gamma/h}$$
 with  $\gamma = (\omega e)^{-1} > 0$ 



# Estimation of the global error

To get estimates of the global error, one has to know something about the error propagation of the modified differential equation.

• Typical situation: if we know that

$$\|\widetilde{\varphi}_t(y_0) - \widetilde{\varphi}_t(z_0)\| \leq c e^{\omega t} \|y_0 - z_0\|,$$

then we have for t = nh

$$\|y_n - \widetilde{\varphi}_t(y_0)\| \leq \alpha e^{-\gamma/h} t e^{\omega t}$$

exponentially close on intervals of length  $\mathcal{O}(1)$ .

• Integrable systems: if we know that

$$\|\widetilde{\varphi}_t(y_0) - \widetilde{\varphi}_t(z_0)\| \leq (a+b t) \|y_0 - z_0\|,$$

then we have for t = nh

$$\|y_n - \widetilde{\varphi}_t(y_0)\| \leq \alpha e^{-\gamma/h} (at + bt^2/2)$$

exponentially close on exponentially long time intervals.

# Near-energy preservation

#### Theorem

Consider a symplectic method of order r with global modified Hamiltonian  $\widetilde{H}(p,q) = H(p,q) + h^r H_{r+1}(p,q) + \ldots + h^{N-1} H_N(p,q).$ Then, the numerical solution satisfies  $H(p_n,q_n) = H(p_0,q_0) + O(h^r)$  for  $nh \le e^{\gamma/2h}$ 

as long as the numerical solution stays in a compact set.

**Proof.** We have 
$$|\widetilde{H}(p_n, q_n) - \widetilde{H}(p_0, q_0)| \leq C \ nh \ e^{-\gamma/h}$$
.



# Completely integrable systems

Consider a Hamiltonian system

$$\dot{y} = J^{-1} \nabla H(y)$$

## Definition

A Hamiltonian system with *d* degrees of freedom  $(H : M \to \mathbb{R}$  with an open set  $M \subset \mathbb{R}^d \times \mathbb{R}^d$ ) is called *completely integrable* if there exist smooth functions  $F_1 = H, F_2, \ldots, F_d$  such that

- $F_1, \ldots, F_d$  are in convolution, i.e.,  $\{F_i, F_j\} = \nabla F_i^{\mathsf{T}} J^{-1} \nabla F_j = 0$ ,
- The gradients of  $F_1, \ldots, F_d$  are everywhere linearly independent,
- The solution trajectories of the Hamiltonian systems with  $F_i$  (i = 1, ..., d) exist for all times and remain in M.

Note that the first condition implies that all function  $F_j$  are first integrals (conserve quantities) of the Hamiltonian system.

Completely integrable systems – examples

- Hamiltonian systems with **one** degree of freedom, e.g., harmonic oscillator, mathematical pendulum
- Kepler problem first integrals are: energy H and angular momentum  $L = q_1p_2 - q_2p_1$

# • Toda lattice with $H(p,q) = \sum_{k=1}^{n} \left(\frac{1}{2} p_k^2 + \exp(q_k - q_{k+1})\right)$ related to a Lax pair $\dot{L} = [B(L), L]$ with skew-symmetric B(L)

- Ablowitz-Ladik discrete nonlinear Schrödinger equation
- Volterra lattices

# Arnold-Liouville Theorem

For a *completely integrable* Hamiltonian system there exists a symplectic transformation

$$(p,q) = \psi(a,\theta)$$
 (2 $\pi$ -periodic in  $\theta$ )

to action-angle variables such that the Hamiltonian becomes

$$H(p,q) = H(\psi(a,\theta)) = K(a).$$

In the action-angle variables, the system becomes

$$\dot{a}_i = 0, \quad \dot{ heta}_i = \omega_i(a), \qquad i = 1, \dots, d$$

with  $\omega_i(a) = \partial K / \partial a_i(a)$ , and can be solved directly

$$a_i(t) = a_{i0}, \quad \theta_i(t) = \theta_{i0} + \omega_i(a_0)t$$

so that

$$(p(t),q(t)) = \psi(a_0,\theta_0+\omega(a_0)t)$$

(periodic or quasi-periodic flow).

# Linear error growth for integrable systems

Assumptions

- completely integrable Hamiltonian system with real-analytic Hamiltonian, action variables a = I(p, q)
- symplectic integrator of order r
- some technical assumptions.

Then, there exist constants C,  $h_0$  such that for  $h \le h_0$  and for  $t = nh \le h^{-r}$  the numerical solution satisfies

$$\begin{split} \|(p_n,q_n)-(p(t),q(t))\|&\leq C\ t\ h^r \quad (\text{linear error growth})\\ \|I(p_n,q_n)-I(p_0,q_0)\|&\leq C\ h^r \qquad (\text{near-conserv. of actions}) \end{split}$$

# **Remark.** The same statement is true if we replace "Hamiltonian" by "reversible" and "symplectic" by "symmetric".

# Numerical experiment

Kepler problem (excentricity e = 0.6)

initial values, such that the orbit is elliptic with period  $2\pi$ 



Explicit Euler: quadratic error growth

Symplectic Euler: linear error growth

# Lecture 2. Backward error analysis

## Modified differential equation

- Construction of the modified differential equation
- Hamiltonian systems symplectic methods

## Long-time error analysis

- Near-energy preservation
- Linear error growth for integrable systems

## 3 Application to charged particle dynamics

- Basic properties
- Main result energy preservation
- Numerical experiments
- Proof backward error analysis

# **Charged particle dynamics**

Newton's Second Law together with Lorentz's force equation yields (assuming suitable units)

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$

where E(x) is the electric field and B(x) the magnetic field.

# **Boris algorithm**

The most simple discretization is

$$x_{n+1} - 2x_n + x_{n-1} = \frac{h}{2}(x_{n+1} - x_{n-1}) \times B(x_n) + h^2 E(x_n)$$

J.P. Boris, *Relativistic plasma simulation-optimization of a hybrid code*. Proc. of 4th Conf. on Numer. Simul. of Plasmas (Nov. 1970)

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$
 as  $\dot{x} = v$   
 $\dot{v} = v \times B(x) + E(x)$ 

• the flow  $\varphi_t(x, v)$  is volume preserving:

 $\mu(\varphi_t(K)) = \mu(K)$  for all t;

• if 
$$E(x) = -\nabla U(x)$$
, the energy  
 $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is preserved;

$$L(x,v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$
 as  $\dot{x} = v$   
 $\dot{v} = v \times B(x) + dv$ 

• the flow  $\varphi_t(x, v)$  is volume preserving:

$$\mu(\varphi_t(K)) = \mu(K)$$
 for all  $t$ ;

*Proof.* Divergence of the vector field = 0, because  $v \times B(x) = \widehat{B}(x) v$  with a skew-symmetric matrix  $\widehat{B}(x)$ .

 if E(x) = -∇U(x) and B(x) = ∇<sub>x</sub> × A(x), the differential equations are the Euler–Lagrange equations with

$$L(x, v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

E(x)

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$
 as  $\dot{x} = v$   
 $\dot{v} = v \times B(x) + E(x)$ 

• the flow  $\varphi_t(x, v)$  is volume preserving:

$$\mu(\varphi_t(K)) = \mu(K)$$
 for all  $t$ ;

• if 
$$E(x) = -\nabla U(x)$$
, the energy  
 $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is preserved;

$$L(x,v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

We write

$$\dot{x} = \dot{x} \times B(x) + E(x) \qquad \text{as} \qquad \dot{x} = v \\ \dot{v} = v \times B(x) + E(x)$$

• the flow  $\varphi_t(x, v)$  is volume preserving:

$$\mu(\varphi_t(K)) = \mu(K)$$
 for all  $t$ ;

• if 
$$E(x) = -\nabla U(x)$$
, the energy  
 $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is preserved;

$$\begin{array}{c|c} \text{if} \\ Proof. \\ & = v^{\top} (v \times B(x) - \nabla U(x)) + v^{\top} \nabla U(x) \\ & = v^{\top} (v \times B(x) - \nabla U(x)) + v^{\top} \nabla U(x) = 0 \end{array}$$

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$
 as  $\dot{x} = v$   
 $\dot{v} = v \times B(x) + E(x)$ 

• the flow  $\varphi_t(x, v)$  is volume preserving:

$$\mu(\varphi_t(K)) = \mu(K)$$
 for all  $t$ ;

• if 
$$E(x) = -\nabla U(x)$$
, the energy  
 $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is preserved;

$$L(x,v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x) \quad \text{as} \quad \dot{\dot{x}} = v \\ \dot{v} = v \times B(x) + E(x)$$
  
• the flow of (v, v) is uslowed and  

$$\frac{d}{dt}(\nabla_v L) = \nabla_x L \\ \frac{d}{dt}(v + A(x)) = -\nabla_x U + \nabla_x (A(x)^\top v) \\ \text{and the statement follows from} \\ \nabla_x (A(x)^\top v) - \frac{d}{dt} A(x) = (A'(x)^\top - A'(x))v = v \times B(x)$$

$$L(x,v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

We write

$$\ddot{x} = \dot{x} \times B(x) + E(x)$$
 as  $\dot{x} = v$   
 $\dot{v} = v \times B(x) + E(x)$ 

• the flow  $\varphi_t(x, v)$  is volume preserving:

$$\mu(\varphi_t(K)) = \mu(K)$$
 for all  $t$ ;

• if 
$$E(x) = -\nabla U(x)$$
, the energy  
 $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is preserved;

$$L(x,v) = \frac{1}{2}v^{\mathsf{T}}v - U(x) + A(x)^{\mathsf{T}}v$$

$$\begin{aligned} x_{n+1} - 2x_n + x_{n-1} &= \frac{h}{2} \left( x_{n+1} - x_{n-1} \right) \times B(x_n) + h^2 E(x_n) \\ v_n &= \frac{1}{2h} \left( x_{n+1} - x_{n-1} \right) \end{aligned}$$

With 
$$v_{n+1/2} = \frac{1}{h}(x_{n+1} - x_n) = v_n + \frac{h}{2}v_n \times B(x_n) + \frac{h}{2}E(x_n)$$
 we have  
 $v_{n+1/2} - v_{n-1/2} = \frac{h}{2}(v_{n+1/2} + v_{n-1/2}) \times B(x_n) + hE(x_n)$ 

and the map  $(x_n, v_{n-1/2}) \mapsto (x_{n+1}, v_{n+1/2})$  is implemented as

$$v_{n-1/2}^{+} = v_{n-1/2} + \frac{h}{2} E(x_n)$$

$$v_{n+1/2}^{-} - v_{n-1/2}^{+} = \frac{h}{2} (v_{n+1/2}^{-} + v_{n-1/2}^{+}) \times B(x_n)$$

$$v_{n+1/2} = v_{n+1/2}^{-} + \frac{h}{2} E(x_n)$$

$$x_{n+1} = x_n + h v_{n+1/2}$$

$$x_{n+1} - 2x_n + x_{n-1} = \frac{h}{2} (x_{n+1} - x_{n-1}) \times B(x_n) + h^2 E(x_n)$$
$$v_n = \frac{1}{2h} (x_{n+1} - x_{n-1})$$

With 
$$v_{n+1/2} = \frac{1}{h}(x_{n+1} - x_n) = v_n + \frac{h}{2}v_n \times B(x_n) + \frac{h}{2}E(x_n)$$
 we have  
 $v_{n+1/2} - v_{n-1/2} = \frac{h}{2}(v_{n+1/2} + v_{n-1/2}) \times B(x_n) + hE(x_n)$ 

and the map  $(x_n,v_{n-1/2})\mapsto (x_{n+1},v_{n+1/2})$  is implemented as

$$v_{n-1/2}^{+} = v_{n-1/2} + \frac{h}{2} E(x_n)$$

$$v_{n+1/2}^{-} - v_{n-1/2}^{+} = \frac{h}{2} (v_{n+1/2}^{-} + v_{n-1/2}^{+}) \times B(x_n)$$

$$v_{n+1/2} = v_{n+1/2}^{-} + \frac{h}{2} E(x_n)$$

$$x_{n+1} = x_n + h v_{n+1/2}$$

$$\begin{aligned} x_{n+1} - 2x_n + x_{n-1} &= \frac{h}{2} \left( x_{n+1} - x_{n-1} \right) \times B(x_n) + h^2 E(x_n) \\ v_n &= \frac{1}{2h} \left( x_{n+1} - x_{n-1} \right) \end{aligned}$$

With 
$$v_{n+1/2} = \frac{1}{h}(x_{n+1} - x_n) = v_n + \frac{h}{2}v_n \times B(x_n) + \frac{h}{2}E(x_n)$$
 we have  
 $v_{n+1/2} - v_{n-1/2} = \frac{h}{2}(v_{n+1/2} + v_{n-1/2}) \times B(x_n) + hE(x_n)$ 

and the map  $(x_n, v_{n-1/2}) \mapsto (x_{n+1}, v_{n+1/2})$  is implemented as

$$v_{n-1/2}^{+} = v_{n-1/2} + \frac{h}{2} E(x_n)$$

$$v_{n+1/2}^{-} - v_{n-1/2}^{+} = \frac{h}{2} (v_{n+1/2}^{-} + v_{n-1/2}^{+}) \times B(x_n)$$

$$v_{n+1/2} = v_{n+1/2}^{-} + \frac{h}{2} E(x_n)$$

$$x_{n+1} = x_n + h v_{n+1/2}$$

With the splitting  

$$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ E(x) \end{pmatrix} + \begin{pmatrix} 0 \\ v \times B(x) \end{pmatrix} + \begin{pmatrix} v \\ 0 \end{pmatrix} \quad \text{we have}$$
With  $\begin{pmatrix} x_{n+1} \\ v_{n+1/2} \end{pmatrix} = \varphi_h^V \circ \varphi_{h/2}^E \circ \Phi_h^B \circ \varphi_{h/2}^E \begin{pmatrix} x_n \\ v_{n-1/2} \end{pmatrix}$ 
where  $\varphi_t^E$  and  $\varphi_t^V$  are the exact flows, and  $\Phi_h^B$  is the discrete flow (mid-point rule) for the vector field in the middle.

$$v_{n-1/2}^{+} = v_{n-1/2} + \frac{h}{2} E(x_n)$$

$$v_{n+1/2}^{-} - v_{n-1/2}^{+} = \frac{h}{2} (v_{n+1/2}^{-} + v_{n-1/2}^{+}) \times B(x_n)$$

$$v_{n+1/2} = v_{n+1/2}^{-} + \frac{h}{2} E(x_n)$$

$$x_{n+1} = x_n + h v_{n+1/2}$$

# Properties of the Boris algorithm

$$\begin{aligned} x_{n+1} - 2x_n + x_{n-1} &= \frac{h}{2} \left( x_{n+1} - x_{n-1} \right) \times B(x_n) + h^2 E(x_n) \\ v_n &= \frac{1}{2h} \left( x_{n+1} - x_{n-1} \right) \end{aligned}$$

- the mapping (x<sub>n</sub>, v<sub>n-1/2</sub> → (x<sub>n+1</sub>, v<sub>n+1/2</sub>) is volume preserving. Hence, the Boris method (x<sub>n</sub>, v<sub>n</sub>) → (x<sub>n+1</sub>, v<sub>n+1</sub>) is conjugate to a volume preserving mapping.
- the Boris method is a variational integrator only if B(x) = Const. (see Ellison & al., and part II of the talk)
- What can be said about near energy preservation in the general case, where B(x) is not a constant vector field? This is the topic of the present talk.

C. L. Ellison, J. W. Burby, and H. Qin, Comment on "Symplectic integration of magnetic systems": A proof that the Boris algorithm is not variational. J. Comput. Phys. 301 (2015), 489–493

# Properties of the Boris algorithm

$$\begin{aligned} x_{n+1} - 2x_n + x_{n-1} &= \frac{h}{2} \left( x_{n+1} - x_{n-1} \right) \times B(x_n) + h^2 E(x_n) \\ v_n &= \frac{1}{2h} \left( x_{n+1} - x_{n-1} \right) \end{aligned}$$

- the mapping (x<sub>n</sub>, v<sub>n-1/2</sub> → (x<sub>n+1</sub>, v<sub>n+1/2</sub>) is volume preserving. Hence, the Boris method (x<sub>n</sub>, v<sub>n</sub>) → (x<sub>n+1</sub>, v<sub>n+1</sub>) is conjugate to a volume preserving mapping.
- the Boris method is a variational integrator only if B(x) = Const. (see Ellison & al., and part II of the talk)
- What can be said about near energy preservation in the general case, where B(x) is not a constant vector field? This is the topic of the present talk.

 C. L. Ellison, J. W. Burby, and H. Qin, Comment on "Symplectic integration of magnetic systems": A proof that the Boris algorithm is not variational. J. Comput. Phys. 301 (2015), 489–493

# Properties of the Boris algorithm

$$x_{n+1} - 2x_n + x_{n-1} = \frac{h}{2} (x_{n+1} - x_{n-1}) \times B(x_n) + h^2 E(x_n)$$
$$v_n = \frac{1}{2h} (x_{n+1} - x_{n-1})$$

- the mapping (x<sub>n</sub>, v<sub>n-1/2</sub> → (x<sub>n+1</sub>, v<sub>n+1/2</sub>) is volume preserving. Hence, the Boris method (x<sub>n</sub>, v<sub>n</sub>) → (x<sub>n+1</sub>, v<sub>n+1</sub>) is conjugate to a volume preserving mapping.
- the Boris method is a variational integrator only if B(x) = Const. (see Ellison & al., and part II of the talk)
- What can be said about near energy preservation in the general case, where B(x) is not a constant vector field? This is the topic of the present talk.

 C. L. Ellison, J. W. Burby, and H. Qin, Comment on "Symplectic integration of magnetic systems": A proof that the Boris algorithm is not variational. J. Comput. Phys. 301 (2015), 489–493

# **Energy preservation - main result**

## Theorem

Assume that at least one of the following conditions is satisfied

- the magnetic field B(x) = B is constant,
- the scalar potential  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$  is quadratic,

and that the numerical solution  $(x_n, v_n)$  of the Boris method stays in a compact set. For every truncation index N, the energy  $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is bounded as

$$|H(x_n, v_n) - H(x_0, v_0)| \le C_{2N}h^2$$
 for  $nh \le h^{-2N}$ 

with C independent of n and h as long as  $nh \leq h^{-2N}$ .

#### What happens if none of the above two conditions is satisfied?

E. Hairer and Ch. Lubich, Energy behaviour of the Boris method for charged-particle dynamics. BIT (2018)

Ernst Hairer (Université de Genève)

Geometric Numerical Integration

# **Energy preservation - main result**

## Theorem

Assume that at least one of the following conditions is satisfied

- the magnetic field B(x) = B is constant,
- the scalar potential  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$  is quadratic,

and that the numerical solution  $(x_n, v_n)$  of the Boris method stays in a compact set. For every truncation index N, the energy  $H(x, v) = \frac{1}{2}v^{\top}v + U(x)$  is bounded as

$$|H(x_n, v_n) - H(x_0, v_0)| \le C_{2N}h^2$$
 for  $nh \le h^{-2N}$ 

with C independent of n and h as long as  $nh \le h^{-2N}$ .

#### What happens if none of the above two conditions is satisfied?

E. Hairer and Ch. Lubich, Energy behaviour of the Boris method for charged-particle dynamics. BIT (2018)

# Example 1: linear growth

We consider the error in the energy for  

$$U(x) = x_1^3 - x_2^3 + \frac{1}{5}x_1^4 + x_2^4 + x_3^4, \quad B(x) = \begin{pmatrix} 0 \\ 0 \\ \sqrt{x_1^2 + x_2^2} \end{pmatrix}$$

$$x(0) = (0.0, 1.0, 0.1)^{\top}, \quad v(0) = (0.09, 0.55, 0.30)^{\top}.$$



# Example 2: random walk

We consider the error in the energy for

$$U(x) = x_1^3 - x_2^3 + \frac{1}{5}x_1^4 + x_2^4 + x_3^4, \qquad B(x) = \frac{1}{2} \begin{pmatrix} x_2 - x_3 \\ x_1 + x_3 \\ x_2 - x_1 \end{pmatrix}$$
  
$$x(0) = (0.0, 1.0, 0.1)^{\top}, \quad v(0) = (0.09, 0.55, 0.30)^{\top}.$$



 $(\mathbf{v}_{0}, \mathbf{v}_{0})$ 

# Backward error analysis (Boris algorithm)

For  $x_n = y(nh)$  and t = nh the Boris algorithm reads

$$y(t+h)-2y(t)+y(t-h) = \frac{h}{2} \Big( y(t+h)-y(t-h) \Big) \times B(y(t)) - h^2 \nabla U(y(t)) \Big)$$

Expanding into powers of h and dividing by  $h^2$  yields

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

Eliminating third and higher derivatives by differentiation

$$\begin{split} \ddot{\mathcal{Y}} &= \ddot{\mathcal{y}} \times \mathcal{B}(y) + \dot{\mathcal{y}} \times \mathcal{B}'(y)\dot{\mathcal{y}} - \nabla^2 \mathcal{U}(y)\dot{\mathcal{y}} + \mathcal{O}(h^2) \\ &= -\nabla \mathcal{U}(y) \times \mathcal{B}(y) + \dot{\mathcal{y}} \times \mathcal{B}'(y)\dot{\mathcal{y}} - \nabla^2 \mathcal{U}(y)\dot{\mathcal{y}} + \mathcal{O}(h^2) \end{split}$$

gives the modified differential equation.

Similarly, we have  $v_n = w(nh)$  for t = nh, where

$$w(t) = \frac{1}{2h} \Big( y(t+h) - y(t-h) \Big) = \dot{y} + \frac{h^2}{3!} \ddot{y} + \frac{h^4}{5!} y^{(5)} + \dots$$

# Backward error analysis (Boris algorithm)

For  $x_n = y(nh)$  and t = nh the Boris algorithm reads

$$y(t+h)-2y(t)+y(t-h) = \frac{h}{2} \Big( y(t+h)-y(t-h) \Big) \times B(y(t)) - h^2 \nabla U(y(t)) \Big)$$

Expanding into powers of h and dividing by  $h^2$  yields

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

Eliminating third and higher derivatives by differentiation

$$\begin{aligned} \ddot{\mathcal{Y}} &= \ddot{\mathcal{Y}} \times \mathcal{B}(\mathbf{y}) + \dot{\mathbf{y}} \times \mathcal{B}'(\mathbf{y})\dot{\mathbf{y}} - \nabla^2 \mathcal{U}(\mathbf{y})\dot{\mathbf{y}} + \mathcal{O}(h^2) \\ &= -\nabla \mathcal{U}(\mathbf{y}) \times \mathcal{B}(\mathbf{y}) + \dot{\mathbf{y}} \times \mathcal{B}'(\mathbf{y})\dot{\mathbf{y}} - \nabla^2 \mathcal{U}(\mathbf{y})\dot{\mathbf{y}} + \mathcal{O}(h^2) \end{aligned}$$

gives the modified differential equation.

Similarly, we have  $v_n = w(nh)$  for t = nh, where

$$w(t) = \frac{1}{2h} \Big( y(t+h) - y(t-h) \Big) = \dot{y} + \frac{h^2}{3!} \ddot{y} + \frac{h^4}{5!} y^{(5)} + \dots$$

# Energy conservation - constant magnetic field

Consider the modified equation

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

and take the scalar product with  $\dot{y}$ . This gives

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big( \frac{1}{2} \dot{y}^{\top} \dot{y} + U(y) + \frac{\hbar^2}{12} \big( \dot{y}^{\top} \ddot{y} - \frac{1}{2} \ddot{y}^{\top} \ddot{y} \big) + \dots \Big) = \frac{\hbar^2}{6} \dot{y}^{\top} \big( \ddot{y} \times B(y) \big) + \dots$$

#### Theorem

If the magnetic field B(x) = B is constant, there exist  $E_{2j}(x, v)$  such that  $\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{1}{2} \dot{y}^\top \dot{y} + U(y) + h^2 E_2(y, \dot{y}) + \ldots + h^{2N} E_{2N}(y, \dot{y}) \right) = \mathcal{O}(h^{2N+2})$ 

along solutions  $(y,\dot{y})$  of the modified differential equation.

# Energy conservation - constant magnetic field

Consider the modified equation

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

and take the scalar product with  $\dot{y}$ . This gives

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + \frac{\hbar^2}{12}\big(\dot{y}^{\top}\ddot{y} - \frac{1}{2}\ddot{y}^{\top}\ddot{y}\big) + \dots\Big) = \frac{\hbar^2}{6}\dot{y}^{\top}\big(\ddot{y} \times B(y)\big) + \dots$$

#### Theorem

If the magnetic field B(x) = B is constant, there exist  $E_{2j}(x, v)$  such that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\frac{1}{2}\dot{y}^{\top}\dot{y}+U(y)+h^{2}E_{2}(y,\dot{y})+\ldots+h^{2N}E_{2N}(y,\dot{y})\Big)=\mathcal{O}(h^{2N+2})$$

along solutions  $(y, \dot{y})$  of the modified differential equation.

# Energy conservation - constant magnetic field

Consider the modified equation

$$\ddot{y} + \frac{h^2}{12} \ddot{y} + \ldots = \left( \dot{y} + \frac{h^2}{6} \ddot{y} + \ldots \right) \times B(y) - \nabla U(y)$$
  
and ta because  $\dot{y}^\top \left( \ddot{y} \times B(y) \right) = \dot{y}^\top \left( \ddot{y} \times B \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left( \dot{y}^\top \left( \ddot{y} \times B \right) \right)$ 

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + \frac{\hbar^2}{12}\big(\dot{y}^{\top}\ddot{y} - \frac{1}{2}\ddot{y}^{\top}\ddot{y}\big) + \dots\Big) = \frac{\hbar^2}{6}\dot{y}^{\top}\big(\ddot{y} \times B(y)\big) + \dots$$

#### Theorem

If the magnetic field B(x) = B is constant, there exist  $E_{2j}(x, v)$  such that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\frac{1}{2}\dot{y}^{\top}\dot{y}+U(y)+h^{2}E_{2}(y,\dot{y})+\ldots+h^{2N}E_{2N}(y,\dot{y})\Big)=\mathcal{O}(h^{2N+2})$$

along solutions  $(y, \dot{y})$  of the modified differential equation.

## Energy conservation - quadratic electric potential

Consider the modified equation with  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$ 

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

and take the scalar product with  $(\dot{y} + \frac{h^2}{6}\ddot{y} + ...)$ . This gives

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{1}{2} \dot{y}^\top \dot{y} + U(y) + \frac{h^2}{12} \left( \dot{y}^\top \ddot{y} + \frac{1}{2} \ddot{y}^\top \ddot{y} \right) + \ldots \right) = -\frac{h^2}{6} \ddot{y}^\top \nabla U(y) + \ldots$$

#### Theorem

If  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$ , there exist  $E_{2j}(x, v)$  such that  $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + h^{2}E_{2}(y, \dot{y}) + \ldots + h^{2N}E_{2N}(y, \dot{y})\right) = \mathcal{O}(h^{2N+2})$ 

along solutions (y, w) of the modified differential equation.

## **Energy conservation - quadratic electric potential**

Consider the modified equation with  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$ 

$$\ddot{y} + \frac{h^2}{12}\ddot{y} + \ldots = \left(\dot{y} + \frac{h^2}{6}\ddot{y} + \ldots\right) \times B(y) - \nabla U(y)$$

and take the scalar product with  $(\dot{y} + \frac{h^2}{6}\ddot{y} + ...)$ . This gives

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + \frac{\hbar^2}{12}\big(\dot{y}^{\top}\ddot{y} + \frac{1}{2}\ddot{y}^{\top}\ddot{y}\big) + \dots\Big) = -\frac{\hbar^2}{6}\ddot{y}^{\top}\nabla U(y) + \dots$$

#### Theorem

If 
$$U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$$
, there exist  $E_{2j}(x, v)$  such that  
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + h^{2}E_{2}(y, \dot{y}) + \ldots + h^{2N}E_{2N}(y, \dot{y})\right) = \mathcal{O}(h^{2N+2})$$

along solutions (y, w) of the modified differential equation.

# Energy conservation - quadratic electric potential

Consider the modified equation with  $U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$ 

$$\vec{y} + \frac{h^2}{t^2} \vec{y} + \ldots = \left( \dot{y} + \frac{h^2}{c} \vec{y} + \ldots \right) \times B(y) - \nabla U(y)$$
ar
because
$$\vec{y}^\top \nabla U(y) = \vec{y}^\top (Qy+q) = \frac{\mathrm{d}}{\mathrm{d}t} \left( \ddot{y}^\top Qy - \frac{1}{2} \dot{y}^\top Q\dot{y} + \ddot{y}^\top q \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}\dot{y}^{\top}\dot{y}+U(y)+\frac{h^2}{12}\left(\dot{y}^{\top}\ddot{y}+\frac{1}{2}\ddot{y}^{\top}\ddot{y}\right)+\ldots\right)=-\frac{h^2}{6}\ddot{y}^{\top}\nabla U(y)+\ldots$$

#### Theorem

If 
$$U(x) = \frac{1}{2}x^{\top}Qx + q^{\top}x$$
, there exist  $E_{2j}(x, v)$  such that  
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}\dot{y}^{\top}\dot{y} + U(y) + h^{2}E_{2}(y, \dot{y}) + \ldots + h^{2N}E_{2N}(y, \dot{y})\right) = \mathcal{O}(h^{2N+2})$$

along solutions (y, w) of the modified differential equation.

# Explanation of the numerical experiments

The numerical solution satisfies (formally)  $x_n = y(nh)$ ,  $v_n = w(nh)$ , where

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(H(y,w)+h^2F(y,w)+\ldots\Big)=h^2G(y,w)+\mathcal{O}(h^4)$$

- integration shows that there is typically a linear drift of size  $th^2 M$ , where M is an upper bound of G(y, w),
- if the solution (y(t), w(t)) is ergodic on an invariant set A with invariant measure  $\mu$ , then

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t G\big(y(s),w(s)\big)\,\mathrm{d}s = \int_A G(x,v)\mu\big(d(x,v)\big)$$

if the integral to the right is non-zero, we will have a linear drift;

• if it is zero, we will have a random walk: the error behaves like  $\mathcal{O}(h^2) + \mathcal{O}(\sqrt{t} h^2)$ .