Summerschool in Aveiro (Sept. 2018), Ernst Hairer

• Part I. Geometric numerical integration

- Hamiltonian systems, symplectic mappings, geometric integrators, Störmer–Verlet, composition and splitting, variational integrator
- Backward error analysis, modified Hamiltonian, long-time energy conservation, application to charged particle dynamics

• Part II. Differential equations with multiple time-scales

- Highly oscillatory problems, Fermi–Pasta–Ulam-type problems, trigonometric integrators, adiabatic invariants
- Modulated Fourier expansion, near-preservation of energy and of adiabatic invariants, application to wave equations

Lecture 3. Highly oscillatory systems

1 Numerical energy conservation

- Molecular dynamics model
- Oscillatory energy FPU-type problem
- Conservation of oscillatory energy (exact solution)

Numerical integrators

- Step size restriction for Störmer-Verlet
- Exponential integrators
- IMEX (implicit–explicit) integrators
- Conservation of energies (numerical solution)

Several high frequencies – resonances

- FPU type problem
- Example with resonant frequencies
- Numerical energy conservation

Example 1. Molecular dynamics model

Consider the N-body problem

$$\ddot{q}=-
abla U(q), \qquad U(q)=\sum_{i=2}^{N}\sum_{j=1}^{i-1}V_{ij}\Big(\|q_i-q_j\|\Big),$$

Initial values:

positions q: randomly perturbed values on a grid (see the figure) momenta $p = \dot{q}$: zero

Numerical simulation

Störmer-Verlet method

$$p_{n+1/2} = p_n - \frac{h}{2} \nabla U(q_n)$$

$$q_{n+1} = q_n + h p_{n+1/2}$$

$$p_{n+1} = p_{n+1/2} - \frac{h}{2} \nabla U(q_{n+1})$$

with two different step sizes

$$h = 0.08$$
 $t = h = 0.04$

4 / 29

Let us look at the Hamiltonian

We plot the total energy

$$H(q,\dot{q})=rac{1}{2}\dot{q}^{\mathsf{T}}\dot{q}+U(q)$$

as a function of time for step sizes:

h = 0.08 (black), h = 0.04, 0.02, 0.01, 0.005 (blue)

Is the step size small (compared to the frequency)?

For the harmonic oscillator $\ddot{q} = -\omega^2 q$ the Störmer–Verlet scheme leads to the recursion

$$q_{n+1} - 2\left(1 - \frac{1}{2}(h\omega)^2\right)q_n + q_{n-1} = 0,$$

which is stable for $0 < h\omega < 2$.

For the *N*-body problem $\ddot{q} = -\nabla U(q)$ we linearise the vector field, we approximate ω^2 by the largest eigenvalue of the Hessian $\nabla^2 U(q)$, and we approximate ω by the square root of the largest eigenvalues.

The largest ω is between 20 and 25.

In the situation of our experiment we have $\omega_{\max} \approx 25$. Therefore step sizes h = 0.08, 0.04, 0.02, 0.01, 0.005correspond to $h \omega_{\max} \approx 2, 1, 0.5, 0.25, 0.125$

Comments

- divergence for h = 0.08, because $h\omega \approx 2$ is too close to the linear stability limit
- backward error analysis cannot be applied for the considered step sizes, because $h\omega$ is not small

Conclusion

- it is an **open problem** to explain the long-time behaviour of the previous experiment
- Let us turn to **simpler problems** which still have high oscillations.

Example 2. Chain of alternating soft and stiff springs

$$H(Q, \dot{Q}) = \frac{1}{2} \sum_{k=1}^{2m} \dot{Q}_k^2 + \frac{1}{4} \sum_{j=1}^m \omega_j^2 (Q_{2j} - Q_{2j-1})^2 + \sum_{j=0}^m (Q_{2j+1} - Q_{2j})^4$$

 $q_j = (Q_{2j} - Q_{2j-1})/\sqrt{2}$ compression/extension of a stiff spring $q_{j+m} = (Q_{2j} + Q_{2j-1})/\sqrt{2}$ its mean position

$$egin{array}{lll} \ddot{q}_j + \omega_j^2 \, q_j &=& -
abla_j \, U(q) \ \ddot{q}_{j+m} &=& -
abla_{j+m} \, U(q) \end{array} egin{array}{lll} j = 1, \ldots, m \end{array}$$

Oscillatory energies

Oscillatory energies of the stiff springs

 I_1

$$I_j(q_j,\dot{q}_j)=rac{1}{2}\left(\dot{q}_j^2+\omega_j^2q_j^2
ight)$$

$$egin{array}{lll} \ddot{q}_j + \omega_j^2 \, q_j &=& -
abla_j \, U(q) \ \ddot{q}_{j+m} &=& -
abla_{j+m} \, U(q) \end{array}$$

Total oscillatory energy

$$I(q, \dot{q}) = I_1(q_1, \dot{q}_1) + \ldots + I_m(q_m, \dot{q}_m)$$

 I_2

 I_3

Highly oscillatory differential equations

Oscillatory Hamiltonian system $\ddot{q}_j + \omega_j^2 q_j = -\nabla_j U(q)$ j = 0, 1

Total energy

$${m H}(q,\dot{q}) = rac{1}{2} \Big(|\dot{q}_0|^2 + |\dot{q}_1|^2 \Big) + rac{1}{2} \, \omega^2 \, |q_1|^2 + U(q)$$

Oscillatory energy

$$I(q_1,\dot{q}_1) = rac{1}{2} \Big(|\dot{q}_1|^2 + \omega^2 \, |q_1|^2 \Big)$$

- ullet $\omega_0=0$ and $\omega_1=\omega\geq 1$ arbitrarily large
- there exist δ > 0 and a set K such that the potential U has bounded derivatives of all orders in a δ-neighborhood of K × {0}.
- the initial values satisfy

$$q_0(0)=\mathcal{O}(1), \;\; \dot{q}_0(0)=\mathcal{O}(1), \;\; q_1(0)=\mathcal{O}(\omega^{-1}), \;\; \dot{q}_1(0)=\mathcal{O}(1),$$

such that $I(q_1(0), \dot{q}_1(0)) \leq E$, where the bound E is independent of ω .

Preservation of the oscillatory energy

We know that

$$H(q(t),\dot{q}(t)) - H(q(0),\dot{q}(0)) = 0$$
 for all t .

Theorem (Benettin, Galgani & Giorgilli, 1987)

For an arbitrarily fixed integer $N \ge 1$ there exist C > 0 and $\omega^* > 0$ such that the following holds for $\omega \ge \omega^*$: along the exact solution the total oscillatory energy deviates from its starting value by no more than

$$\left|I\big(q_1(t),\dot{q}_1(t)\big)-I\big(q_1(0),\dot{q}_1(0)\big)\right|\leq C\,\omega^{-1}\quad\text{ for }\ 0\leq t\leq\omega^N,$$

provided that $q_0(t)$ stays in the set K for such long times. The threshold ω^* and the constant C depend on N, on the energy bound E and on bounds of derivatives of the potential U.

This result explains the excellent long-time preservation of the total oscillatory energy in Example 2 (for the exact solution).

Lecture 3. Highly oscillatory systems

Numerical energy conservation

- Molecular dynamics model
- Oscillatory energy FPU-type problem
- Conservation of oscillatory energy (exact solution)

Numerical integrators

- Step size restriction for Störmer-Verlet
- Exponential integrators
- IMEX (implicit-explicit) integrators
- Conservation of energies (numerical solution)

Several high frequencies – resonances

- FPU type problem
- Example with resonant frequencies
- Numerical energy conservation

Step size restriction for Störmer–Verlet

Harmonic oscillator

$$\ddot{q}+\omega^2 \, q \, = \, 0$$

Störmer–Verlet

$$q_{n+1} - 2q_n + q_{n-1} + (h\omega)^2 q_n = 0$$

The characteristic equation of this difference relation is

$$\zeta^2 - 2\left(1 - \frac{(h\omega)^2}{2}\right)\zeta + 1 = 0$$

and we have stability (bounded solutions) if and only if

$$\left|1 - \frac{(h\omega)^2}{2}\right| < 1$$
 i.e. $0 < h\omega < 2$

Aim. Consider numerical integrators without such a severe step size restriction.

Exponential integrators

For a system $\ddot{q} + \Omega^2 q = -\nabla U(q)$ we consider

$$q_{n+1} - 2\cos(h\Omega) q_n + q_{n-1} = -h^2 \Psi \nabla U(\Phi q_n)$$
$$2h \operatorname{sinc}(h\Omega) p_n = q_{n+1} - q_{n-1}$$

where $\Psi = \psi(h\Omega)$, $\Phi = \phi(h\Omega)$ and $\psi(x)$, $\phi(x)$ are even functions satisfying $\psi(0) = 1$, $\phi(0) = 1$.

Exponential integrators

For a system $\ddot{q} + \Omega^2 q = -
abla U(q)$ we consider

$$q_{n+1} - 2\cos(h\Omega) q_n + q_{n-1} = -h^2 \Psi \nabla U(\Phi q_n)$$
$$2h \operatorname{sinc}(h\Omega) p_n = q_{n+1} - q_{n-1}$$

where $\Psi = \psi(h\Omega)$, $\Phi = \phi(h\Omega)$ and $\psi(x)$, $\phi(x)$ are even functions satisfying $\psi(0) = 1$, $\phi(0) = 1$.

One-step formulation

$$q_{n+1} = \cos(h\Omega) q_n + h \operatorname{sinc}(h\Omega) p_n + \frac{1}{2}h^2 \Psi g_n$$

$$p_{n+1} = -\Omega \sin(h\Omega) q_n + \cos(h\Omega) p_n + \frac{1}{2}h \left(\Psi_0 g_n + \Psi_1 g_{n+1}\right)$$

where $g_n = -\nabla U(\phi q_n)$, $\Psi_0 = \psi_0(h\Omega)$, $\Psi_1 = \psi_1(h\Omega)$, and the functions $\psi_0(x)$ and $\psi_1(x)$ are given by

$$\psi(x) = \operatorname{sinc}(x) \psi_1(x), \qquad \psi_0(x) = \cos(x) \psi_1(x).$$

Interpretation as splitting method

The previous one-step formulation can be split into

$$\begin{pmatrix} p_n \\ q_n \end{pmatrix} \mapsto \begin{pmatrix} p_n^+ \\ q_n \end{pmatrix} \mapsto \begin{pmatrix} p_{n+1}^- \\ q_{n+1} \end{pmatrix} \mapsto \begin{pmatrix} p_{n+1} \\ q_{n+1} \end{pmatrix}$$

where

$$p_n^+ = p_n - \frac{h}{2} \Psi_1 \nabla U(\Phi q_n)$$

$$p_{n+1} = p_{n+1}^- - \frac{h}{2} \Psi_1 \nabla U(\Phi q_{n+1})$$

and the central mapping is the exact flow of the differential equation $\ddot{q} + \Omega^2 q = 0$.

Exponential integrators

Properties.

- For $\Omega = 0$ we get the Störmer–Verlet method.
- This method is symmetric, and of order 2
- It is symplectic, if and only if $\psi(x) = \operatorname{sinc}(x) \phi(x)$
- It is (linearly) unconditionally stable
- it gives the exact solution, when $\nabla U(x) \equiv 0$.

Examples.

(A)
$$\psi(x) = \operatorname{sinc}^2(x/2)$$
 $\phi(x) = 1$ Gautschi (1961)
(B) $\psi(x) = \operatorname{sinc}(x)$ $\phi(x) = 1$ Deuflhard (1979)
(C) $\psi(x) = \operatorname{sinc}(x)\phi(x)$ $\phi(x) = \operatorname{sinc}(x)$ García-Archilla (1999)
(D) $\psi(x) = \operatorname{sinc}^2(x)$ $\phi(x) = 1$ H. & Lubich (2000)

IMEX (implicit-explicit) integrators

For a system $\ddot{q} + \Omega^2 q = -
abla U(q)$ we consider

$$q_{n+1} - 2q_n + q_{n-1} + h^2 \Omega^2 q_n + \alpha h^2 \Omega^2 (q_{n+1} - 2q_n + q_{n-1}) = -h^2 \nabla U(q_n)$$

 $2hp_n = (I + \alpha h^2 \Omega^2)(q_{n+1} - q_{n-1})$

- This method is symmetric, symplectic and of order 2.
- It is linearly stable for $h\omega < 2/\sqrt{1-4lpha}$ and
- unconditionally stable for $\alpha \ge 1/4$.

Special cases:

- $\alpha = 0$: Störmer–Verlet
- $\alpha = 1/4$: IMEX scheme (Zhang & Skeel 1997, Stern & Grinspun 2009)

IMEX scheme as modified exponential integrator

modified exponential integrator

$$q_{n+1} - 2\cos(h\widetilde{\Omega}) q_n + q_{n-1} = -h^2 \widetilde{\Psi} \nabla U(\widetilde{\Phi} q_n)$$
$$2h \widetilde{\chi} p_n = q_{n+1} - q_{n-1}$$

where $\widetilde{\Psi} = \psi(h\widetilde{\Omega})$, $\widetilde{\Phi} = \phi(h\widetilde{\Omega})$, $\widetilde{\chi} = \chi(h\widetilde{\Omega})$. The modified exponential integrator is symplectic if $\psi(h\omega) = \chi(h\omega)\phi(h\omega)$.

$$q_{n+1} - 2q_n + q_{n-1} + h^2 \Omega^2 q_n + \alpha h^2 \Omega^2 (q_{n+1} - 2q_n + q_{n-1}) = -h^2 \nabla U(q_n)$$

$$2hp_n = (I + \alpha h^2 \Omega^2)(q_{n+1} - q_{n-1})$$

is a modified exponential integrator with $h\widetilde{\omega}\in[0,\pi]$ defined by

$$\cos(h\widetilde{\omega}) = \frac{1 + (\alpha - \frac{1}{2})h^2\omega^2}{1 + \alpha h^2\omega^2} \quad \text{or equiv.} \quad \sin\left(\frac{1}{2}h\widetilde{\omega}\right) = \frac{\frac{1}{2}h\omega}{\sqrt{1 + \alpha h^2\omega^2}}$$

nd $\phi(x) = 1, \ \psi(x) = \chi(x) = 1 - 4\alpha \sin^2\left(\frac{1}{2}x\right).$

а

Numerical energy conservation

In addition to the assumption for the analytic solution we require that

- finite energy $\frac{1}{2} \|\dot{x}(0)\|^2 + \frac{\omega^2}{2} \|x_1(0)\|^2 \le E$
- non-resonance $|\sin(\frac{h}{2}k\omega)| \ge c\sqrt{h}$ for $k = 1, \dots N$
- filter functions $|\psi(h\omega)| \leq C_1 \operatorname{sinc}^2(\frac{h\omega}{2}), \ldots$
- the numerical solution Φx_n stays in a compact set
- the condition $h\omega \ge c_0 > 0$

Theorem (H. & Lubich, 2001)

Under these assumptions, we have

$$\begin{array}{rcl} H(q_n,p_n) & = & H(q_0,p_0) + \mathcal{O}(h) \\ I(q_n,p_n) & = & I(q_0,p_0) + \mathcal{O}(h) \end{array} \qquad \mbox{for} \quad 0 \leq nh \leq h^{-N+1} \end{array}$$

Numerical illustration: Hamiltonian

Error in Hamiltonian as function of $h\omega$ (step size h = 0.02)

Ernst Hairer (Université de Genève)

Geometric Numerical Integration

Numerical illustration: oscillatory energy

Error in oscillatory energy as function of $h\omega$ (step size h = 0.02)

Lecture 3. Highly oscillatory systems

Numerical energy conservation

- Molecular dynamics model
- Oscillatory energy FPU-type problem
- Conservation of oscillatory energy (exact solution)

Numerical integrators

- Step size restriction for Störmer-Verlet
- Exponential integrators
- IMEX (implicit-explicit) integrators
- Conservation of energies (numerical solution)

Several high frequencies – resonances

- FPU type problem
- Example with resonant frequencies
- Numerical energy conservation

FPU type problem

We consider the problem $\ddot{q} + \Omega^2 q = -
abla U(q)$ where

$$q=egin{pmatrix} q_0\ q_1\ dots\ q_\ell\end{pmatrix} \qquad \Omega=egin{pmatrix} 0&&&\ &\omega_1&&\ &\omega_1&&\ &\ddots&&\ &&\ddots&\ &&&\omega_\ell\end{pmatrix}$$

It is Hamiltonian with ($\omega_0 = 0$)

$$H(q, \dot{q}) = rac{1}{2} \sum_{j=0}^{\ell} \left(\|\dot{q}_j\|^2 + \omega_j^2 \|q_j\|^2
ight) + U(q)$$

We assume that the ω_j are well separated, i.e.,

$$\omega_j = \frac{\lambda_j}{\varepsilon}, \qquad 0 < \lambda_1 < \lambda_2 < \ldots < \lambda_\ell, \quad 0 < \varepsilon \ll 1$$

Example with resonant frequencies

Three frequencies, two of them in resonance:

$$\lambda_1 = 1$$
 (double), $\lambda_2 = \sqrt{2}$, $\lambda_3 = 2$, $\omega = \varepsilon^{-1} = 70$.

The first one is a double eigenvalue of Ω .

$$U(q) = (0.001q_0 + q_{11} + q_{12} + q_2 + q_3)^4$$

Figure shows the oscillatory energies of all 4 components.

Resonance module

We consider the resonance module

$$\mathcal{M}:=\{k\in\mathbb{Z}^\ell\;;\;k_1\lambda_1+\ldots+k_\ell\lambda_\ell=0\,\}$$

For our example, where

$$\lambda_1 = 1$$
 (double), $\lambda_2 = \sqrt{2}$, $\lambda_3 = 2$,

we have

$$\mathcal{M} = \{(-2k_3, 0, k_3) ; k_3 \in \mathbb{Z} \}$$

Numerical energy conservation

Theorem (Cohen, H. & Lubich, 2005)

Under suitable assumptions (similar to those for one high frequency), the numerical solution of the exponential integrator satisfies

$$\begin{array}{ll} H(q_{n},\dot{q}_{n}) &=& H(q_{0},\dot{q}_{0}) + \mathcal{O}(h) \\ I_{\mu}(q_{n},\dot{q}_{n}) &=& I_{\mu}(q_{0},\dot{q}_{0}) + \mathcal{O}(h) \end{array} \text{ for } 0 \leq nh \leq h^{-N+1} \\ \text{for } \mu \in \mathbb{R}^{\ell} \text{ with } \mu \perp \mathcal{M}_{N} = \{k \in \mathcal{M} \, ; \, |k| \leq N\}, \text{ where} \\ I_{\mu}(q,\dot{q}) = \sum_{j=1}^{\ell} \frac{\mu_{j}}{\lambda_{j}} I_{j}(q_{j},\dot{q}_{j}), \quad I_{j}(q_{j},\dot{q}_{j}) = \frac{1}{2} \left(\|\dot{q}_{j}\|^{2} + \frac{\lambda_{j}^{2}}{\varepsilon^{2}} \|q_{j}\|^{2} \right)$$

Reference for the analogous result for the analytic solution: Benettin, Galgani & Giorgilli (1989)

Ernst Hairer (Université de Genève)

Geometric Numerical Integration

Example (cont.)

For the previous example, where $\lambda_1=1, \ \lambda_2=\sqrt{2}, \ \lambda_3=2$, we have

$$\mathcal{M} = \{(-2k_3, 0, k_3) ; k_3 \in \mathbb{Z} \}$$

and

$$\mathcal{M}^{\perp}=\langle (1,0,2), (0,\sqrt{2},0)\rangle$$

In this example: $l_1 + l_3$ and l_2 are well conserved. There is an energy exchange between l_1 and l_3 .

Numerical experiment

Three frequencies, two of them in resonance:

$$\lambda_1 = 1$$
 (double), $\lambda_2 = \sqrt{2}, \ \lambda_3 = 2.$

Oscillatory energies of all 4 components with Störmer-Verlet:

Observation. The numerical solution completely misses the energy exchange between l_1 and l_3 . Why ?

Numerical experiment – explanation

The Störmer-Verlet method, applied to

$$\ddot{q}+\Omega^2 q=-
abla U(q)$$
 with $\Omega= ext{diag}~(0,\omega_1,\ldots,\omega_\ell)$

can be interpreted as an exponential integrator with modified frequencies given by

$$\cos(h\widetilde{\omega}_j) = \frac{1 - \frac{1}{2}h^2\omega_j^2}{1 + \frac{1}{2}h^2\omega_j^2} \quad \text{or equiv.} \quad \sin\left(\frac{1}{2}h\widetilde{\omega}_j\right) = \frac{1}{2}h\omega_j.$$

The frequencies $\omega_1 = 1$ and $\omega_3 = 2$ are in resonance, but the modified frequencies $\tilde{\omega}_1$ and $\tilde{\omega}_3$ are not.