
Summerschool in Aveiro (Sept. 2018), Ernst Hairer

Part I. Geometric numerical integration

I Hamiltonian systems, symplectic mappings, geometric integrators,
Störmer–Verlet, composition and splitting, variational integrator

I Backward error analysis, modified Hamiltonian, long-time energy
conservation, application to charged particle dynamics

Part II. Differential equations with multiple time-scales

I Highly oscillatory problems, Fermi–Pasta–Ulam-type problems,
trigonometric integrators, adiabatic invariants

I Modulated Fourier expansion, near-preservation of energy and of
adiabatic invariants, application to wave equations
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Lecture 4. Modulated Fourier expansion

1 Long-term energy preservation
Construction of modulated Fourier expansion
Formal invariants
From short to long intervals
Several high frequencies

2 One-dimensional wave equation
Harmonic actions – long-term preservation
Pseudo-spectral semi-discretization
Full discretization
Long-term preservation of total energy and actions
Störmer–Verlet scheme – leapfrog method
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Long-term energy preservation

In Lecture 3 we have seen that for highly oscillatory differential equations

q̈ + Ω2q = −∇U(q), q =

(
q0

q1

)
, Ω =

(
0 0
0 ωI

)
we have:

for the analytic solution

Hamiltonian H(q, q̇) is exactly preserved (this is trivial)

total oscillatory energy I (q, q̇) is nearly preserved (adiabatic invariant)

for the numerical solution of exponential integrators

Hamiltonian H(q, q̇) is nearly preserved

total oscillatory energy I (q, q̇) is nearly preserved

Here, we present the idea of the proof of these statements
– using modulated Fourier expansions.
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Motivation (exact solution)

Problem: ẍ + ω2x = 0

Solution: x(t) = c1e
iωt + c−1e

−iωt

Problem: ẍ + ω2x = −x

Solution: x(t) = c1e
i
√
ω2+1 t + c−1e

−i
√
ω2+1 t

= eiωtz1(t) + e−iωtz−1(t)

z1(t) = c1e
iωt (
√

1+ω−2−1) = c1e
i ( 1

2ω
+O(ω−3))t

Problem: ẍ + ω2x = g(x)

Solution will contain terms zk(t) eikωt for k ∈ Z with
slowly varying coefficient functions zk(t).
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Sketch of the proof

for the exact solution of the for the numerical solution of a
highly oscillatory problem trigonometric integrator

q̈ + Ω2q = −∇U(q) qn+1 − 2 cos(hΩ)qn + qn−1 = . . .

q(t) ≈
∑
k∈Z

zk(t) eikωt qn ≈
∑
k∈Z

zk(t) eikωt , t = nh

Study of the near-preservation of the energy is in three steps:

Step 1 Construction of the coefficient functions
as solution of a differential-algebraic system

Step 2 Find formal invariants of the system for the
coefficient functions (close to total and oscillatory energies)

Step 3 From short to long time intervals
concatenate estimates for short time intervals.
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Step 1. Construction of the coefficient functions
Consider q̈ + Ω2q = g(q) = −∇U(q) with Ω = diag (0, ωI ) and put

q(t) =

(
q0(t)
q1(t)

)
≈
∑
k∈Z

(
zk0 (t)
zk1 (t)

)
eikωt

Inserting this ansatz into the ODE, expanding the nonlinearity into a
Taylor series around z0(t), and comparing the terms with eikωt yields

z̈kj + 2ikωżkj +
(
ω2
j − (kω)2

)
zkj

=
∑

s(α)=k

1

m!
g

(m)
j (z0)(zα1 , . . . , zαm)

Noting that ω0 = 0, ω1 = ω, the dominant terms give rise to

z̈0
0 (t) = . . . second order differential equation

ż±1
1 (t) = . . . first order differential equations

zkj (t) = . . . algebraic relations (for the remaining pairs (j , k))
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Step 2. Formal invariant
We introduce functions yk(t) = zk(t) eikωt such that

q(t) ≈
∑
k∈Z

zk(t) eikωt =
∑
k∈Z

yk(t)

For the functions constructed in step 1, we have (with y = (yk)k∈Z)

ÿk + Ω2yk = −∇−kU(y)

where, for g(q) = −∇U(q),

U(y) = U(y0) +
∑
m≥1

1

m!

∑
α1+...+αm=0

U(m)(y0)
(
yα1 , . . . , yαm

)
With y(λ) = (eikλyk)k∈Z the expression U

(
y(λ)

)
is independent of λ,

so that
d

dλ

∣∣∣
λ=0
U
(
y(λ)

)
=
∑
k∈Z

ik(yk)>∇kU(y) = 0
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Step 2. Formal invariant
With this preparation we define

I(y, ẏ) = −iω
∑
k∈Z

k(y−k)>ẏk

and we compute (using ÿk + Ω2yk = −∇−kU(y))

d

dt
I(y, ẏ) = −iω

∑
k∈Z

k
(

(y−k)>ÿk + (ẏ−k)>ẏk
)

= . . . = iω
∑
k∈Z

k(y−k)>∇−kU(y) = 0

Theorem

Under the usual assumptions there exists a function I
(
y, ẏ
)
, such that

I
(
y(t), ẏ(t)

)
= I

(
y(0), ẏ(0)

)
+O(ω−N)

I
(
y(t), ẏ(t)

)
= I

(
q1(t), q̇1(t)

)
+O(ω−1)
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Step 3. From short to long intervals
Consider a grid 0 = t0 < t1 < t2 < . . . with tm+1 − tm = O(1)

t0 t1 t2 t3 t4

q(t)

y[0](t)
y[1](t) y[2](t) y[3](t)

On the interval [tm, tm+1], consider the modulated Fourier expansion
corresponding to initial values q(tm), q̇(tm), and denote the coefficient
functions by y[m](t).

On the whole interval t ≥ 0, consider y(t) defined by

y(t) = y[m](t) for t ∈ [tm, tm+1]

Note that y(t) has jump discontinuities of size O(ω−N) at tm.

Consequence. The invariant I
(
y(t), ẏ(t)

)
has jump discontinuities

of size O(ω−N) at tm.
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Step 3. From short to long intervals

t0 t1 t2 t3 t4

I
(
y(t), ẏ(t)

)

The near invariant I
(
y(t), ẏ(t)

)
has

jump discontinuities of size O(ω−N) at tm,

slope of size O(ω−N) in between.

This implies that∣∣I(y(t), ẏ(t)
)
−I
(
y(0), ẏ(0)

)∣∣ ≤ C t ω−N

Since I
(
y(t), ẏ(t)

)
is close to I

(
q1(t), q̇1(t)

)
, this proves that

I
(
q1(t), q̇1(t)

)
= I
(
q1(0), q̇1(0)

)
+O(ω−1) +O(t ω−N)
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Extensions

several high frequencies
resonant frequencies

infinitely many high frequencies
semi-linear wave equation, Schrödinger equation

one state-dependent high frequency
semi-linear wave equation with slowly varying wave speed;
charged particle dynamics in a non-constant strong magnetic field

Contributors (2000 – 2018):

Ch. Lubich, E. H., D. Cohen, L. Gauckler, D. Weiss, . . .
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Several high frequencies

We consider the problem q̈ + Ω2q = −∇U(q) where

q =


q0

q1
...
q`

 Ω =


0

ω1

. . .

ω`


It is Hamiltonian with (ω0 = 0)

H(q, q̇) =
1

2

∑̀
j=0

(
‖q̇j‖2 + ω2

j ‖qj‖2

)
+ U(q)

We assume that the ωj are well separated, i.e.,

ωj =
λj
ε
, 0 < λ1 < λ2 < . . . < λ`, 0 < ε� 1
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Modulated Fourier expansion: what is different?
ω is a vector, and k becomes a multi-index:

q(t) =
∑
k∈N

e i k·ω tzk(t)

where k · ω = k1ω1 + . . .+ k`ω`.

The functions e i k·ω t are not always independent.

Resonance module:

M := {k ∈ Z` ; k1λ1 + . . .+ k`λ` = 0 }

From every equivalence class [k] := k +M we choose a representative
such that |k | = |k1|+ . . .+ |k`| is minimal.
The set of these representatives is denoted by N ,

N = Z`/M

The proof of the long-time behaviour is the same, but more technical.
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Lecture 5. Highly oscillatory systems

1 Long-term energy preservation
Construction of modulated Fourier expansion
Formal invariants
From short to long intervals
Several high frequencies

2 One-dimensional wave equation
Harmonic actions – long-term preservation
Pseudo-spectral semi-discretization
Full discretization
Long-term preservation of total energy and actions
Störmer–Verlet scheme – leapfrog method
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One-dimensional wave equation

We consider

∂2
t u − ∂2

xu + ρ u + g(u) = 0

Domain: −π ≤ x ≤ π and t ≥ 0

Nonlinearity: smooth and g(0) = g ′(0) = 0

Boundary conditions: periodic

Initial data: small in the Sobolev norm(∥∥u(·, 0)
∥∥2

s+1
+
∥∥∂tu(·, 0)

∥∥2

s

)1/2

≤ ε
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Exactly conserved quantities

Total energy (potential U(u) =
∫
g(u) du)

H(t) =
1

2π

∫ π

−π

(
1

2

(
(∂tu)2 +(∂xu)2 +ρ u2

)
+U

(
u
))

dx

Momentum

K (t) =
1

2π

∫ π

−π
∂xu ∂tu dx

Aim of the talk

discuss the long-time conservation of energy and momentum
by numerical discretizations
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Harmonic actions

In terms of the Fourier coefficients

u(x , t) =
∞∑

j=−∞
uj(t)e ijx , ∂tu(x , t) =

∞∑
j=−∞

vj(t)e ijx

the wave equation becomes with ωj =
√
j2 + ρ

∂2
t uj + ω2

j uj + Fjg(u) = 0 for j ∈ Z

Harmonic actions

Ij(t) =
ωj

2
|uj(t)|2 +

1

2ωj
|vj(t)|2
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Preservation properties for the exact solution

Total energy and momentum are exactly conserved.

Harmonic actions Ij(t) =
ωj

2
|uj(t)|2 +

1

2ωj
|vj(t)|2

Assumptions:

a) Non-resonance condition of the form: for given N
and ε > 0 there exists σ > 0 such that (· · · ) ≤ CεN

b) Initial data:
∥∥u(·, 0)

∥∥2

s+1
+
∥∥∂tu(·, 0)

∥∥2

s
≤ ε2

‖v‖s =
( ∞∑
j=−∞

ω2s
j |vj |2

)1/2

Bambusi (2003) shows that the non-resonance condition is satisfied for
almost all ρ satisfying 0 < ρ0 ≤ ρ ≤ ρ1.
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Theorem (A)

Under the above assumptions, for s ≥ σ + 1,
∞∑
`=0

ω2s+1
`

|I`(t)− I`(0)|
ε2

≤ C ε for 0 ≤ t ≤ ε−N+1

This is closely related to results by
Bambusi (2003) and by Bourgain (1996).

Corollary (spatial regularity)

For t ≤ ε−N+1, we have∥∥u(·, t)
∥∥2

s+1
+
∥∥∂tu(·, t)

∥∥2

s
≤ ε2(1 + Cε)
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Example

∂2
t u − ∂2

xu + ρ u + g(u) = 0

Equation: ρ = 0.5 and g(u) = −u2

Boundary conditions: periodic

Initial data: ε = 0.1

u(x , 0) =
(x
π
− 1
)3(x

π
+ 1
)2
ε

∂tu(x , 0) = 0.1 · x
π

(x
π
− 1
)(x

π
+ 1
)2
ε

which are in Hs+1 and Hs , respectively, for s < 2.
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Total energy : bold black line

Harmonic actions: alternatively in blue and red
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Illustration of the condition on initial data
Blow-up for ε ≥ 0.364
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Pseudo-spectral semi-discretization
We consider equidistant collocation points in space

xk = kπ/M for k = −M, . . . ,M − 1

and an approximation by the trigonometric polynomial

uM(x , t) =
∑
|j |≤M

′
qj(t)eijx

The 2M-periodic sequence q = (qj) satisfies

d2qj
dt2

+ ω2
j qj = fj(q) with f (q) = −F2M g(F−1

2Mq)

where F2M stands for the discrete Fourier transform(
F2Mw

)
j

=
1

2M

M−1∑
k=−M

wke
−ijxk ,

(
F−1

2Mq
)
k

=
M−1∑
l=−M

qle
ikxl

Ernst Hairer (Université de Genève) Geometric Numerical Integration September 10 -14, 2018 23 / 35



Hamiltonian structure of the semi-discretization

Pseudo-spectral discretization is an ODE with Hamiltonian

HM(p, q) =
1

2

∑
[j |≤M

′
(
|pj |2 + ω2

j |qj |2
)

+ V (q)

V (q) =
1

2M

M−1∑
k=−M

U
(
(F−1

2Mq)k
)

which is exactly preserved by the semi-discrete solution.

Comments.

Total energy of the wave equation is not exactly preserved.

The momentum of the wave equation K (p, q) = −
∑
|j |≤M

′′i j q−jpj
is no longer exactly preserved.

We consider the harmonic actions Ij(p, q) =
ωj

2
|qj |2 +

1

2ωj
|pj |2
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Theorem (B)

Under the assumptions of Theorem (A) we have, for 0 ≤ t ≤ ε−N+1,

M∑
`=0

ω2s+1
`

|I`(t)− I`(0)|
ε2

≤ C ε

|H(t)− H(0)|
ε2

≤ C εM−s−1

|K (t)− K (0)|
ε2

≤ C t εM−s−1

The first estimate implies long-time regularity of the solution
of the semi-discretization∥∥uM(·, t)

∥∥2

s+1
+
∥∥vM(·, t)

∥∥2

s
≤ ε2(1 + Cε)
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Explicit Runge-Kutta method (DOPRI5), 2M = 27

Atol = 10−5, Rtol = 10−4, 32 735 accepted steps
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Full discretization (trigonometric integrator)

To the semi-discretized system d2q
dt2 + Ω2q = f (q) we apply

qn+1 − 2 cos(hΩ) qn + qn−1 = h2 Ψ f (Φqn)

where Ψ = ψ(hΩ) and Φ = φ(hΩ). The filter functions are assumed to
satisfy the symplecticty condition

ψ(ξ) = sinc (ξ)φ(ξ)

The velocity approximation pn is given by

2h sinc (hΩ) pn = qn+1 − qn−1

Aim: explain the long-time behaviour of this method

Ernst Hairer (Université de Genève) Geometric Numerical Integration September 10 -14, 2018 27 / 35



Assumptions for long-term energy preservation

a) Non-resonance condition of the form: for given N
and ε > 0 there exists σ > 0 such that (· · · ) ≤ CεN .
This is stronger than in the analytic case.

b) Numerical non-resonance condition
| sin(hωj)| ≥ hε1/2 for |j | ≤ M

c) Symplecticity condition
ψ(ξ) = sinc (ξ)ϕ(ξ)

d) Small initial data:∥∥q(0)
∥∥2

s+1
+
∥∥p(0)

∥∥2

s
≤ ε2, s ≥ σ + 1
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Theorem (C)

Under the above assumptions we have for the trigonometric integrator, on
an interval of length 0 ≤ tn = nh ≤ ε−N+1,

M∑
`=0

ω2s+1
`

|I`(pn, qn)− I`(p
0, q0)|

ε2
≤ C ε

|HM(pn, qn)− HM(p0, q0)|
ε2

≤ C ε

|K (pn, qn)− K (p0, q0)|
ε2

≤ C (ε+ M−s + t εM−s+1)

The first estimate implies boundedness over long times
of the numerical solution (full discretization)∥∥qn∥∥2

s+1
+
∥∥pn∥∥2

s
≤ ε2(1 + Cε)
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Numerical non-resonance condition, ψ = sinc , φ = 1
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Störmer–Verlet as trigonometric integrator

For q̈ + Ω2q = g(q) we consider the Störmer–Verlet method

qn+1 − 2qn + qn−1 = −(hΩ)2qn + h2g(qn)

qn+1 − qn−1 = 2h pn

and write it as trigonometric integrator

q̃ n+1 − 2 cos(hΩ̃) q̃ n + q̃ n−1 = h2Ψg(Φq̃ n)

q̃ n+1 − q̃ n−1 = 2h sinc (hΩ̃) p̃ n

where Ψ = ψ(hΩ̃), Φ = φ(hΩ̃) with ψ = sinc , φ = 1, and

I − 1

2
(hΩ)2 = cos(hΩ̃) or equiv. sin

(hΩ̃

2

)
=

hΩ

2

q̃ n = sinc (hΩ̃) qn and p̃ n = pn
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Application of results for exponential integrators

analytical non-resonance condition for ω̃j

numerical non-resonance condition OK: hωM < 2

symplecticity condition OK: ψ = sinc , φ = 1

smallness of initial data

We have for example

∞∑
`=0

ω̃2s+1
`

|Ĩ`(pn, qn)− Ĩ`(p
0, q0)|

ε2
≤ C ε

where Ĩ`(p
n, qn) =

ω̃`
2

sinc 2(hω̃`) |qn` |2 +
1

2ω̃`
|pn` |2
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Since

Ĩ`(p
n, qn) =

ω`
ω̃`

(
I`(p

n, qn)− γ(hω`)
ω`
2
|q`|2

)

with γ(hω) =
(hω)2

4
< 1 we have:

Theorem (Störmer–Verlet)

Under the above assumptions we have for the Störmer–Verlet integrator,
on an interval of length 0 ≤ tn = nh ≤ ε−N+1,
∞∑
`=0

ω2s−1
`

|I`(pn, qn)− I`(p
0, q0)|

ε2
≤ C (ε+ h2)

|HM(pn, qn)− HM(p0, q0)|
ε2

≤ C (ε+ h2)

|K (pn, qn)− K (p0, q0)|
ε2

≤ C (ε+ h2 + M−s + t εM−s+1)
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Illustration: CFL number ≈ 1.92

every fifth harmonic action is drawn
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