Summerschool in Aveiro (Sept. 2018), Ernst Hairer

o Part I. Geometric numerical integration
» Hamiltonian systems, symplectic mappings, geometric integrators,
Stormer—Verlet, composition and splitting, variational integrator

» Backward error analysis, modified Hamiltonian, long-time energy
conservation, application to charged particle dynamics

o Part Il. Differential equations with multiple time-scales

» Highly oscillatory problems, Fermi—Pasta—Ulam-type problems,
trigonometric integrators, adiabatic invariants

» Modulated Fourier expansion, near-preservation of energy and of
adiabatic invariants, application to wave equations
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Lecture 4. Modulated Fourier expansion

@ Long-term energy preservation
@ Construction of modulated Fourier expansion
@ Formal invariants
@ From short to long intervals
@ Several high frequencies

© One-dimensional wave equation

@ Harmonic actions — long-term preservation
Pseudo-spectral semi-discretization
Full discretization
Long-term preservation of total energy and actions
Stormer—Verlet scheme — leapfrog method
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Long-term energy preservation

In Lecture 3 we have seen that for highly oscillatory differential equations

- 2 (9o . 0 O
i+@a=-vua., a=(P). 2§ w,)J

for the analytic solution

we have:

e Hamiltonian H(q, q) is exactly preserved (this is trivial)

o total oscillatory energy /(q, ) is nearly preserved (adiabatic invariant)

for the numerical solution of exponential integrators
e Hamiltonian H(q, g) is nearly preserved

e total oscillatory energy /(q, q) is nearly preserved

Here, we present the idea of the proof of these statements
— using modulated Fourier expansions.
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Motivation (exact solution)

Problem: X+ w?x=0
Solution:  x(t) = c1e*t + c_je vt
Problem: X+ w?x = —x
Solution:  x(t) = clei\/wTFlt + C_le—i«/wTHt
= ethzl(t) + e—iwfz—l(t)

Zl(t) = Clei“-’t(\/mfl) — Clei(i—i_o(wi:%))t

Problem: % + w?x = g(x)

Solution will contain terms z(t) ekt for k € 7 with
slowly varying coefficient functions z*(t).
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Sketch of the proof

for the exact solution of the for the numerical solution of a
highly oscillatory problem trigonometric integrator
G+ Q%g=-VU(q) Gni1 — 2cos(hQ)qn + qn-1 = ...

q(t) ~ sz(t) eik”tJ Gn = sz(t) elkwt p — th

keZ keZ

Study of the near-preservation of the energy is in three steps:

Step 1 Construction of the coefficient functions

as solution of a differential-algebraic system
Step 2 Find formal invariants of the system for the

coefficient functions (close to total and oscillatory energies)
Step 3 From short to long time intervals

concatenate estimates for short time intervals.
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Step 1. Construction of the coefficient functions
Consider G+ Q%q = g(q) = —VU(q) with Q = diag (0,w/) and put

- (50) -2 (40

Inserting this ansatz into the ODE, expanding the nonlinearity into a
Taylor series around z°(t), and comparing the terms with %“t yields

z —|—21sz —|—( (kw))
= > gm0, 2

s(a)=k

Noting that wg = 0, w1 = w, the dominant terms give rise to

79(t) =... second order differential equation
zFL(t) = ... first order differential equations
zjk(t) = ... algebraic relations (for the remaining pairs (j, k))
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Step 2. Formal invariant
We introduce functions y*(t) = zX(t) ekt such that

Z P t) elkwt Zyk(t) J

keZ keZ

For the functions constructed in step 1, we have (with y = (y*)xez)

Y+ QPN = -V U(y)
where, for g(q) = =V U(q),

Uy = U+ S UMK, ,yam)J

m>1 " ai+..+am=0

With y(A) = (e**y*) ez the expression U (y())) is independent of A,

so that

(%\’,\:ou(y()‘)) - Zik(yk)Tvku(y) =0

keZ
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Step 2. Formal invariant
With this preparation we define

I(y,y) = —iw ) k(y‘k)Ti/"J

kEZ

and we compute (using y* + Q%yk = —V_,U(y))

C1y.y) = o k(0
= ... o= iw) k(y ™ )TV_iU(y)=0
keZ

Theorem

Under the usual assumptions there exists a function T (y, y), such that
Z(y(1),y(1) = Z(y(0),y(0)) + O(w™")
Z(y(t),y(t)) = I(a(t),q(t)) +O(w™)
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Step 3. From short to long intervals

Consideragrid 0=ty <ti <tp<... with tpmy1 —tm=0O(1)
[1] 3
y- (1) 2] yB3l(t)
[0] y(t)
yPi(t) /! /
/ / q(t)
o t ) s ta

On the interval [t, tmy1], consider the modulated Fourier expansion
corresponding to initial values q(tm), g(tm), and denote the coefficient
functions by yl™l(t).

On the whole interval t > 0, consider y(t) defined by

y(t) = yI™(t) for t € [tm, tmi]

Note that y(t) has jump discontinuities of size O(w™N) at tp,.

Consequence. The invariant I(y(t),y(t)) has jump discontinuities
of size O(w™N) at tp,.
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Step 3. From short to long intervals

Z(y(t),y(t))

T —

i'O i‘l i‘2 t:3 1:4

The near invariant Z(y(t),y(t)) has
o jump discontinuities of size O(w™N) at tp,
o slope of size O(w™"N) in between.

This implies that

I Z(y(£),9(8) = Z(y(0), ¥(0))| < Ctw™" |

Since Z(y(t),y(t)) is close to /(qi(t), 41(t)), this proves that

(au(), (1) = 1(1(0), &1(0)) + O(w ™) + O w™) |
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Extensions

o several high frequencies
resonant frequencies

e infinitely many high frequencies
semi-linear wave equation, Schrodinger equation

@ one state-dependent high frequency
semi-linear wave equation with slowly varying wave speed;
charged particle dynamics in a non-constant strong magnetic field

Contributors (2000 — 2018):
Ch. Lubich, E. H., D. Cohen, L. Gauckler, D. Weiss, ...
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Several high frequencies

We consider the problem §+ Q%q = —VU(q) where

o 0
q1 w1
qae Wy

It is Hamiltonian with (wg = 0)

14

H(a.d) = 5 3= (16 + 2 lai?) + Uta)

j=0

We assume that the w; are well separated, i.e.,

wj:;, D<Mi<o<...<)N, O<exl
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Modulated Fourier expansion: what is different?
w is a vector, and k becomes a multi-index:

q(t) _ Z eik-wtzk(t) J

keN

where k- -w = kiwi + ...+ kpwy.

The functions e'k“t are not always independent.

Resonance modaule:
M={keZ'; kkhi+...+ khg=0}

From every equivalence class [k] := k + M we choose a representative
such that |k| = |ki| + ...+ |ke| is minimal.
The set of these representatives is denoted by N,

N =7 /M

The proof of the long-time behaviour is the same, but more technical.
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Lecture 5. Highly oscillatory systems

© One-dimensional wave equation

@ Harmonic actions — long-term preservation
Pseudo-spectral semi-discretization
Full discretization
Long-term preservation of total energy and actions
Stormer—Verlet scheme — leapfrog method
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One-dimensional wave equation

We consider

8§u—8§u+pu+g(u):0J

Domain: —7<x<m and t>0
Nonlinearity: smooth and g(0) = g’(0) =0
Boundary conditions: periodic

Initial data: small in the Sobolev norm

1/2
(Jut- 02, + [out-0)2) <
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Exactly conserved quantities

Total energy (potential U(u) = [ g(u) du)

H(t) = % /ﬂ (é((atu)2+(8xu)2+pu2) +U(u)> dx}

—Tr

Momentum

K(t) = % Oxu atude

—T

Aim of the talk

discuss the long-time conservation of energy and momentum
by numerical discretizations
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Harmonic actions

In terms of the Fourier coefficients
Oo . m ..
u(x,t) = Y ui(t)e™, deulx, t) = > vi(t)e’
j=—00 Jj=—00

the wave equation becomes with w; = \/j2+ p

Ofuj+wiu + Fig(u) =0  for jEZJ

Harmonic actions

56 = Llus(o)? + }MMWJ
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Preservation properties for the exact solution

Total energy and momentum are exactly conserved.

. . i 1
Harmonic actions /;(t) = %|uj(t)]2 + zjj|"j(t)‘2
Assumptions:

a) Non-resonance condition of the form: for given N
and e > 0 there exists o > 0 such that (---) < CeN

b) Initial data: |[u(-,0)|12,, + [|9¢u(-, 0)|? < &2

° 1/2
2 2
Ivlls = (32 w®lyl?)

j=—00

Bambusi (2003) shows that the non-resonance condition is satisfied for
almost all p satisfying 0 < pg < p < p1.
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Theorem (A)

Under the above assumptions, for s > o + 1,

> l(t) — |
wgs-ﬁ-l ’f() ) f(0)| SCE for OStSE:—N-i-l

€
=0

This is closely related to results by
Bambusi (2003) and by Bourgain (1996).

Corollary (spatial regularity)

For t < e N+l we have

G 0)]|2, 1 + [, 1)]2 < (1 + Ce)
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Example

8?u—8)2<u+pu+g(u):0J

Equation: p =05 and g(u) = —u?
Boundary conditions: periodic
Initial data: ¢=0.1

u(x,0) = (f — 1>3<% + 1)25

™

deu(x,0) = 0.1 f(f . 1) (5 + 1)25

TN\ ™

which are in H5t1 and HS, respectively, for s < 2.
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Total energy : bold black line

Harmonic actions: alternatively in blue and red
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lllustration of the condition on initial data
Blow-up for ¢ > 0.364
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Pseudo-spectral semi-discretization
We consider equidistant collocation points in space

xk = kn/M for k=-M,.... M—1
and an approximation by the trigonometric polynomial

M(X’ t) _ Z/qj(t)eijx J

Lil<m

The 2M-periodic sequence q = (q;) satisfies

d? : =
dtzj —|—w q; = f;(q) with f(q) = —Fom g(le\}lq)}

where JF>ps stands for the discrete Fourier transform

(-7:2MW M Z wye U, o) Z qret
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Hamiltonian structure of the semi-discretization

Pseudo-spectral discretization is an ODE with Hamiltonian

1 /
Hup.a) = 3 X (10 +oflal) + V(o)
lil<m
1 M—1

V(e) = 5 D U((Fmak)
k=—M

which is exactly preserved by the semi-discrete solution.

Comments.

@ Total energy of the wave equation is not exactly preserved.

@ The momentum of the wave equation K(p, q) = —ng,\/;'ij q-;p;
is no longer exactly preserved.

@ We consider the harmonic actions /;(p, q) = % |gj]? + % pj|?
J
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Theorem (B)
Under the assumptions of Theorem (A) we have, for 0 < t < e~ N+1,
M
W2t |le(t) - 1¢(0)| < Ce
€
T - HO)
| ( 5 < CE?M_S_I
€
K(t) — K
| ( )82 (O)‘ < CtEMfsfl

The first estimate implies long-time regularity of the solution
of the semi-discretization

MG )2, + [VME B2 < 2+ Ce)
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Explicit Runge-Kutta method (DOPRIS5), 2M = 27
Atol = 107°, Rtol =10~% 32735 accepted steps

102

10

10°¢

(TP B
00 300 400

L
500

£ . . . . P R
.0 2 4 .6 .8 1.0 100 2

Ernst Hairer (Université de Genéve) Geometric Numerical Integration September 10-14, 2018 26 / 35



Full discretization (trigonometric integrator)

To the semi-discretized system % +0Q2q = f(q) we apply

g™t —2cos(hQ) q" +q" 1 = h2 W f(d)q”)J

where U = ¢(hQ2) and ® = ¢(hQ2). The filter functions are assumed to
satisfy the symplecticty condition

P(&) = sinc (€) ¢(E)

The velocity approximation p” is given by

2hsinc (hQ) p" = g™t — "1 J

Aim: explain the long-time behaviour of this method
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Assumptions for long-term energy preservation

a) Non-resonance condition of the form: for given N
and ¢ > 0 there exists o > 0 such that (---) < CeN.
This is stronger than in the analytic case.

b) Numerical non-resonance condition
|sin(hw;)| > he'/? for |j| <M

c) Symplecticity condition

(&) = sinc (£) ¢(£)

d) Small initial data:
a2, + [lp©@)]2 <2 s>o+1
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Theorem (C)

Under the above assumptions we have for the trigonometric integrator, on
an interval of length 0 < t, = nh < ¢~ N*1L,

M
/ noan) _ | 0 0
Zw§s+1!z(P7q)€2 ACEY DI Ce

¢=0
|Hm(p", q") — Hu(pP°, ¢°)|
52
|K(p", q") — K(p°, q°)]
52

< Ce

< Cle+ M= +te M=t

The first estimate implies boundedness over long times
of the numerical solution (full discretization)

lalos + [P 13 < 2@+ Co)
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Numerical non-resonance condition, ) =sinc, ¢ =1

102 hws = hwy = 7 + 0.01
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Stormer—Verlet as trigonometric integrator
For G+ Q%q = g(q) we consider the Stérmer—Verlet method

qn+1 _ 2qn & qn—l — _(hQ)2qn + h2g(qn)
qn+1 o qn—l — 2hpn

and write it as trigonometric integrator

gl —2cos(hQ) "+ g™t = RWg(gn)
grtl — gt = 2hsinc (hQ)p"

where W = )(hQ), ® = ¢(hQ) with ¢ = sinc, ¢ = 1, and

1, o = o hQ\  hQ
I — E(hQ) = cos(h2) or equiv. sm<7> = 7J

g" = sinc (hﬁ) q" and p" = p”J
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Application of results for exponential integrators

@ analytical non-resonance condition for w;

@ numerical non-resonance condition OK: hwy < 2
@ symplecticity condition OK: % =sinc, ¢ =1

@ smallness of initial data

We have for example

o0 T n .n _T 0 .0
Zags—i—l (P, q )52 (P’ q°)| < Ce

=0

~ w ~ 1
where  1y(p", q") = — sinc2(hiy) |gp ] + — |pp[?
2 2wy
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Since

Tooan oy WL n _ny wh 2
o) = 5 (", a") =) Tl |

h 2
with y(hw) = ( Z) <1 we have:

Theorem (Stormer—Verlet)

Under the above assumptions we have for the Stérmer—\Verlet integrator,
on an interval of length 0 < t, = nh < g=N+1,

) / / 0 0
Z sl|€p q)2 (P,Q)| SC(E-I—hZ)
€
=0
H n_ H 0 0
’M(paq)2 M(paq)‘ SC(€+h2)
&
K(p". g™ — K 0 0
‘(P,Q)€2 (P,CI)| < C(6+h2+M_s+t€M_s+1)

v
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Illustration: CFL number ~ 1.92

every fifth harmonic action is drawn
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References

for analytical solution

Long-time analysis of nonlinearly perturbed wave equations
via modulated Fourier expansions.
Arch. Ration. Mech. Anal. 187 (2008) 341-368

for pseudo-spectral semi-discretization

Spectral semi-discretizations of weakly nonlinear wave equations
over long times.
Found. Comput. Math. 8 (2008) 319-334

for full discretization

Conservation of energy, momentum and actions in
numerical discretizations of nonlinear wave equations.
Numerische Mathematik 110 (2008) 113-143
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