Summerschool in Aveiro (Sept. 2018), Ernst Hairer

- Part I. Geometric numerical integration
- Hamiltonian systems, symplectic mappings, geometric integrators, Störmer-Verlet, composition and splitting, variational integrator
- Backward error analysis, modified Hamiltonian, long-time energy conservation, application to charged particle dynamics
- Part II. Differential equations with multiple time-scales
- Highly oscillatory problems, Fermi-Pasta-Ulam-type problems, trigonometric integrators, adiabatic invariants
- Modulated Fourier expansion, near-preservation of energy and of adiabatic invariants, application to wave equations

Lecture 4. Modulated Fourier expansion

(1) Long-term energy preservation

- Construction of modulated Fourier expansion
- Formal invariants
- From short to long intervals
- Several high frequencies
(2) One-dimensional wave equation
- Harmonic actions - long-term preservation
- Pseudo-spectral semi-discretization
- Full discretization
- Long-term preservation of total energy and actions
- Störmer-Verlet scheme - leapfrog method

Long-term energy preservation

In Lecture 3 we have seen that for highly oscillatory differential equations

$$
\ddot{q}+\Omega^{2} q=-\nabla U(q), \quad q=\binom{q_{0}}{q_{1}}, \quad \Omega=\left(\begin{array}{cc}
0 & 0 \\
0 & \omega l
\end{array}\right)
$$

we have:
for the analytic solution

- Hamiltonian $H(q, \dot{q})$ is exactly preserved (this is trivial)
- total oscillatory energy $I(q, \dot{q})$ is nearly preserved (adiabatic invariant)
for the numerical solution of exponential integrators
- Hamiltonian $H(q, \dot{q})$ is nearly preserved
- total oscillatory energy $I(q, \dot{q})$ is nearly preserved

Here, we present the idea of the proof of these statements

- using modulated Fourier expansions.

Motivation (exact solution)

Problem: $\quad \ddot{x}+\omega^{2} x=0$
Solution: $\quad x(t)=c_{1} \mathrm{e}^{\mathrm{i} \omega t}+c_{-1} \mathrm{e}^{-\mathrm{i} \omega t}$
Problem: $\quad \ddot{x}+\omega^{2} x=-x$
Solution: $\quad x(t)=c_{1} \mathrm{e}^{\mathrm{i} \sqrt{\omega^{2}+1} t}+c_{-1} \mathrm{e}^{-\mathrm{i} \sqrt{\omega^{2}+1} t}$

$$
=\mathrm{e}^{\mathrm{i} \omega t} z^{1}(t)+\mathrm{e}^{-\mathrm{i} \omega t} z^{-1}(t)
$$

$$
z^{1}(t)=c_{1} \mathrm{e}^{\mathrm{i} \omega t\left(\sqrt{1+\omega^{-2}}-1\right)}=c_{1} \mathrm{e}^{\mathrm{i}\left(\frac{1}{2 \omega}+\mathcal{O}\left(\omega^{-3}\right)\right) t}
$$

Problem: $\quad \ddot{x}+\omega^{2} x=g(x)$
Solution will contain terms $z^{k}(t) \mathrm{e}^{\mathrm{i} k \omega t}$ for $k \in \mathbb{Z}$ with slowly varying coefficient functions $z^{k}(t)$.

Sketch of the proof

for the exact solution of the highly oscillatory problem

$$
\ddot{q}+\Omega^{2} q=-\nabla U(q)
$$

$$
q(t) \approx \sum_{\mathbf{k} \in \mathbb{Z}} z^{k}(t) \mathrm{e}^{\mathrm{i} k \omega t}
$$

for the numerical solution of a trigonometric integrator

$$
q_{n+1}-2 \cos (h \Omega) q_{n}+q_{n-1}=\ldots
$$

$$
q_{n} \approx \sum_{k \in \mathbb{Z}} z^{k}(t) \mathrm{e}^{\mathrm{i} k \omega t}, \quad t=n h
$$

Study of the near-preservation of the energy is in three steps:
Step 1 Construction of the coefficient functions as solution of a differential-algebraic system
Step 2 Find formal invariants of the system for the coefficient functions (close to total and oscillatory energies)
Step 3 From short to long time intervals concatenate estimates for short time intervals.

Step 1. Construction of the coefficient functions

Consider $\ddot{q}+\Omega^{2} q=g(q)=-\nabla U(q)$ with $\Omega=\operatorname{diag}(0, \omega l)$ and put

$$
q(t)=\binom{q_{0}(t)}{q_{1}(t)} \approx \sum_{k \in \mathbb{Z}}\binom{z_{0}^{k}(t)}{z_{1}^{k}(t)} \mathrm{e}^{\mathrm{i} k \omega t}
$$

Inserting this ansatz into the ODE, expanding the nonlinearity into a Taylor series around $z^{0}(t)$, and comparing the terms with $\mathrm{e}^{\mathrm{i} k \omega t}$ yields

$$
\begin{aligned}
& \ddot{z}_{j}^{k}+2 i k \omega \dot{z}_{j}^{k}+\left(\omega_{j}^{2}-(k \omega)^{2}\right) z_{j}^{k} \\
& \quad=\sum_{s(\alpha)=k} \frac{1}{m!} g_{j}^{(m)}\left(z^{0}\right)\left(z^{\alpha_{1}}, \ldots, z^{\alpha_{m}}\right)
\end{aligned}
$$

Noting that $\omega_{0}=0, \omega_{1}=\omega$, the dominant terms give rise to

$$
\begin{array}{ll}
\ddot{z}_{0}^{0}(t)=\ldots & \text { second order differential equation } \\
\dot{z}_{1}^{ \pm 1}(t)=\ldots & \text { first order differential equations } \\
z_{j}^{k}(t)=\ldots & \text { algebraic relations (for the remaining pairs }(j, k))
\end{array}
$$

Step 2. Formal invariant

We introduce functions $y^{k}(t)=z^{k}(t) \mathrm{e}^{\mathrm{i} k \omega t}$ such that

$$
q(t) \approx \sum_{k \in \mathbb{Z}} z^{k}(t) \mathrm{e}^{\mathrm{i} k \omega t}=\sum_{k \in \mathbb{Z}} y^{k}(t)
$$

For the functions constructed in step 1 , we have (with $\mathbf{y}=\left(y^{k}\right)_{k \in \mathbb{Z}}$)

$$
\ddot{y}^{k}+\Omega^{2} y^{k}=-\nabla_{-k} \mathcal{U}(\mathbf{y})
$$

where, for $g(q)=-\nabla U(q)$,

$$
\mathcal{U}(\mathbf{y})=U\left(y^{0}\right)+\sum_{m \geq 1} \frac{1}{m!} \sum_{\alpha_{1}+\ldots+\alpha_{m}=0} U^{(m)}\left(y^{0}\right)\left(y^{\alpha_{1}}, \ldots, y^{\alpha_{m}}\right)
$$

With $\mathbf{y}(\lambda)=\left(\mathrm{e}^{\mathrm{i} k \lambda} y^{k}\right)_{k \in \mathbb{Z}}$ the expression $\mathcal{U}(\mathbf{y}(\lambda))$ is independent of λ, so that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \lambda}\right|_{\lambda=0} \mathcal{U}(\mathbf{y}(\lambda))=\sum_{k \in \mathbb{Z}} \mathrm{i} k\left(y^{k}\right)^{\top} \nabla_{k} \mathcal{U}(\mathbf{y})=0
$$

Step 2. Formal invariant

With this preparation we define

$$
\mathcal{I}(\mathbf{y}, \dot{\mathbf{y}})=-\mathrm{i} \omega \sum_{k \in \mathbb{Z}} k\left(y^{-k}\right)^{\top} \dot{y}^{k}
$$

and we compute (using $\ddot{y}^{k}+\Omega^{2} y^{k}=-\nabla_{-k} \mathcal{U}(\mathbf{y})$)

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{I}(\mathbf{y}, \dot{\mathbf{y}}) & =-\mathrm{i} \omega \sum_{k \in \mathbb{Z}} k\left(\left(y^{-k}\right)^{\top} \ddot{y}^{k}+\left(\dot{y}^{-k}\right)^{\top} \dot{y}^{k}\right) \\
& =\ldots=\mathrm{i} \omega \sum_{k \in \mathbb{Z}} k\left(y^{-k}\right)^{\top} \nabla_{-k} \mathcal{U}(\mathbf{y})=0
\end{aligned}
$$

Theorem

Under the usual assumptions there exists a function $\mathcal{I}(\mathbf{y}, \dot{\mathbf{y}})$, such that

$$
\begin{aligned}
\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t)) & =\mathcal{I}(\mathbf{y}(0), \dot{\mathbf{y}}(0))+\mathcal{O}\left(\omega^{-N}\right) \\
\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t)) & =I\left(q_{1}(t), \dot{q}_{1}(t)\right)+\mathcal{O}\left(\omega^{-1}\right)
\end{aligned}
$$

Step 3. From short to long intervals

Consider a grid $0=t_{0}<t_{1}<t_{2}<\ldots$ with $t_{m+1}-t_{m}=\mathcal{O}(1)$

On the interval $\left[t_{m}, t_{m+1}\right]$, consider the modulated Fourier expansion corresponding to initial values $q\left(t_{m}\right), \dot{q}\left(t_{m}\right)$, and denote the coefficient functions by $\mathbf{y}^{[m]}(t)$.
On the whole interval $t \geq 0$, consider $\mathbf{y}(t)$ defined by

$$
\mathbf{y}(t)=\mathbf{y}^{[m]}(t) \quad \text { for } \quad t \in\left[t_{m}, t_{m+1}\right]
$$

Note that $\mathbf{y}(t)$ has jump discontinuities of size $\mathcal{O}\left(\omega^{-N}\right)$ at t_{m}.
Consequence. The invariant $\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t))$ has jump discontinuities of size $\mathcal{O}\left(\omega^{-N}\right)$ at t_{m}.

Step 3. From short to long intervals

The near invariant $\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t))$ has

- jump discontinuities of size $\mathcal{O}\left(\omega^{-N}\right)$ at t_{m},
- slope of size $\mathcal{O}\left(\omega^{-N}\right)$ in between.

This implies that

$$
|\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t))-\mathcal{I}(\mathbf{y}(0), \dot{\mathbf{y}}(0))| \leq C t \omega^{-N}
$$

Since $\mathcal{I}(\mathbf{y}(t), \dot{\mathbf{y}}(t))$ is close to $I\left(q_{1}(t), \dot{q}_{1}(t)\right)$, this proves that

$$
I\left(q_{1}(t), \dot{q}_{1}(t)\right)=I\left(q_{1}(0), \dot{q}_{1}(0)\right)+\mathcal{O}\left(\omega^{-1}\right)+\mathcal{O}\left(t \omega^{-N}\right)
$$

Extensions

- several high frequencies resonant frequencies
- infinitely many high frequencies semi-linear wave equation, Schrödinger equation
- one state-dependent high frequency
semi-linear wave equation with slowly varying wave speed; charged particle dynamics in a non-constant strong magnetic field

Contributors (2000 - 2018):
Ch. Lubich, E. H., D. Cohen, L. Gauckler, D. Weiss, ...

Several high frequencies

We consider the problem $\ddot{q}+\Omega^{2} q=-\nabla U(q)$ where

$$
q=\left(\begin{array}{c}
q_{0} \\
q_{1} \\
\vdots \\
q_{\ell}
\end{array}\right) \quad \Omega=\left(\begin{array}{cccc}
0 & & & \\
& \omega_{1} & & \\
& & \ddots & \\
& & & \omega_{\ell}
\end{array}\right)
$$

It is Hamiltonian with $\left(\omega_{0}=0\right)$

$$
H(q, \dot{q})=\frac{1}{2} \sum_{j=0}^{\ell}\left(\left\|\dot{q}_{j}\right\|^{2}+\omega_{j}^{2}\left\|q_{j}\right\|^{2}\right)+U(q)
$$

We assume that the ω_{j} are well separated, i.e.,

$$
\omega_{j}=\frac{\lambda_{j}}{\varepsilon}, \quad 0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{\ell}, \quad 0<\varepsilon \ll 1
$$

Modulated Fourier expansion: what is different?

ω is a vector, and k becomes a multi-index:

$$
q(t)=\sum_{k \in \mathcal{N}} e^{\mathrm{i} k \cdot \omega t} z^{k}(t)
$$

where $\quad k \cdot \omega=k_{1} \omega_{1}+\ldots+k_{\ell} \omega_{\ell}$.
The functions $e^{\mathrm{i} k \cdot \omega t}$ are not always independent.
Resonance module:

$$
\mathcal{M}:=\left\{k \in \mathbb{Z}^{\ell} ; k_{1} \lambda_{1}+\ldots+k_{\ell} \lambda_{\ell}=0\right\}
$$

From every equivalence class $[k]:=k+\mathcal{M}$ we choose a representative such that $|k|=\left|k_{1}\right|+\ldots+\left|k_{\ell}\right|$ is minimal. The set of these representatives is denoted by \mathcal{N},

$$
\mathcal{N}=\mathbb{Z}^{\ell} / \mathcal{M}
$$

The proof of the long-time behaviour is the same, but more technical.

Lecture 5. Highly oscillatory systems

(1) Long-term energy preservation

- Construction of modulated Fourier expansion
- Formal invariants
- From short to long intervals
- Several high frequencies
(2) One-dimensional wave equation
- Harmonic actions - long-term preservation
- Pseudo-spectral semi-discretization
- Full discretization
- Long-term preservation of total energy and actions
- Störmer-Verlet scheme - leapfrog method

One-dimensional wave equation

We consider

$$
\partial_{t}^{2} u-\partial_{x}^{2} u+\rho u+g(u)=0
$$

Domain: $\quad-\pi \leq x \leq \pi \quad$ and $\quad t \geq 0$
Nonlinearity: smooth and $g(0)=g^{\prime}(0)=0$
Boundary conditions: periodic
Initial data: small in the Sobolev norm

$$
\left(\|u(\cdot, 0)\|_{s+1}^{2}+\left\|\partial_{t} u(\cdot, 0)\right\|_{s}^{2}\right)^{1 / 2} \leq \varepsilon
$$

Exactly conserved quantities

Total energy (potential $\left.U(u)=\int g(u) d u\right)$

$$
H(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{2}\left(\left(\partial_{t} u\right)^{2}+\left(\partial_{x} u\right)^{2}+\rho u^{2}\right)+U(u)\right) d x
$$

Momentum

$$
K(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \partial_{x} u \partial_{t} u d x
$$

Aim of the talk

discuss the long-time conservation of energy and momentum by numerical discretizations

Harmonic actions

In terms of the Fourier coefficients

$$
u(x, t)=\sum_{j=-\infty}^{\infty} u_{j}(t) e^{\mathrm{i} j x}, \quad \partial_{t} u(x, t)=\sum_{j=-\infty}^{\infty} v_{j}(t) e^{\mathrm{i} j x}
$$

the wave equation becomes with $\omega_{j}=\sqrt{j^{2}+\rho}$

$$
\partial_{t}^{2} u_{j}+\omega_{j}^{2} u_{j}+\mathcal{F}_{j} g(u)=0 \quad \text { for } \quad j \in \mathbb{Z}
$$

Harmonic actions

$$
l_{j}(t)=\frac{\omega_{j}}{2}\left|u_{j}(t)\right|^{2}+\frac{1}{2 \omega_{j}}\left|v_{j}(t)\right|^{2}
$$

Preservation properties for the exact solution

Total energy and momentum are exactly conserved.

Harmonic actions $\quad I_{j}(t)=\frac{\omega_{j}}{2}\left|u_{j}(t)\right|^{2}+\frac{1}{2 \omega_{j}}\left|v_{j}(t)\right|^{2}$
Assumptions:
a) Non-resonance condition of the form: for given N and $\varepsilon>0$ there exists $\sigma>0$ such that $(\cdots) \leq C \varepsilon^{N}$
b) Initial data: $\|u(\cdot, 0)\|_{s+1}^{2}+\left\|\partial_{t} u(\cdot, 0)\right\|_{s}^{2} \leq \varepsilon^{2}$

$$
\|v\|_{s}=\left(\sum_{j=-\infty}^{\infty} \omega_{j}^{2 s}\left|v_{j}\right|^{2}\right)^{1 / 2}
$$

Bambusi (2003) shows that the non-resonance condition is satisfied for almost all ρ satisfying $0<\rho_{0} \leq \rho \leq \rho_{1}$.

Theorem (A)
Under the above assumptions, for $s \geq \sigma+1$,

$$
\sum_{\ell=0}^{\infty} \omega_{\ell}^{2 s+1} \frac{\left|I_{\ell}(t)-I_{\ell}(0)\right|}{\varepsilon^{2}} \leq C \varepsilon \quad \text { for } \quad 0 \leq t \leq \varepsilon^{-N+1}
$$

This is closely related to results by Bambusi (2003) and by Bourgain (1996).

Corollary (spatial regularity)
For $t \leq \varepsilon^{-N+1}$, we have

$$
\|u(\cdot, t)\|_{s+1}^{2}+\left\|\partial_{t} u(\cdot, t)\right\|_{s}^{2} \leq \varepsilon^{2}(1+C \varepsilon)
$$

Example

$$
\partial_{t}^{2} u-\partial_{x}^{2} u+\rho u+g(u)=0
$$

Equation: $\rho=0.5$ and $g(u)=-u^{2}$
Boundary conditions: periodic
Initial data: $\quad \varepsilon=0.1$

$$
\begin{aligned}
u(x, 0) & =\left(\frac{x}{\pi}-1\right)^{3}\left(\frac{x}{\pi}+1\right)^{2} \varepsilon \\
\partial_{t} u(x, 0) & =0.1 \cdot \frac{x}{\pi}\left(\frac{x}{\pi}-1\right)\left(\frac{x}{\pi}+1\right)^{2} \varepsilon
\end{aligned}
$$

which are in H^{s+1} and H^{s}, respectively, for $s<2$.

Total energy : bold black line
Harmonic actions: alternatively in blue and red

Illustration of the condition on initial data

Blow-up for $\varepsilon \geq 0.364$

Pseudo-spectral semi-discretization

We consider equidistant collocation points in space

$$
x_{k}=k \pi / M \quad \text { for } \quad k=-M, \ldots, M-1
$$

and an approximation by the trigonometric polynomial

$$
u^{M}(x, t)=\sum_{|j| \leq M}^{\prime} q_{j}(t) \mathrm{e}^{\mathrm{ij} \mathrm{j}}
$$

The $2 M$-periodic sequence $q=\left(q_{j}\right)$ satisfies

$$
\frac{d^{2} q_{j}}{d t^{2}}+\omega_{j}^{2} q_{j}=f_{j}(q) \quad \text { with } \quad f(q)=-\mathcal{F}_{2 M} g\left(\mathcal{F}_{2 M}^{-1} q\right)
$$

where $\mathcal{F}_{2 M}$ stands for the discrete Fourier transform

$$
\left(\mathcal{F}_{2 M} w\right)_{j}=\frac{1}{2 M} \sum_{k=-M}^{M-1} w_{k} \mathrm{e}^{-\mathrm{i} j x_{k}}, \quad\left(\mathcal{F}_{2 M}^{-1} q\right)_{k}=\sum_{l=-M}^{M-1} q_{l} \mathrm{e}^{\mathrm{i} k x_{l}}
$$

Hamiltonian structure of the semi-discretization

Pseudo-spectral discretization is an ODE with Hamiltonian

$$
\begin{aligned}
H_{M}(p, q) & =\frac{1}{2} \sum_{[j \mid \leq M}^{\prime}\left(\left|p_{j}\right|^{2}+\omega_{j}^{2}\left|q_{j}\right|^{2}\right)+V(q) \\
V(q) & =\frac{1}{2 M} \sum_{k=-M}^{M-1} U\left(\left(\mathcal{F}_{2 M}^{-1} q\right)_{k}\right)
\end{aligned}
$$

which is exactly preserved by the semi-discrete solution.

Comments.

- Total energy of the wave equation is not exactly preserved.
- The momentum of the wave equation $K(p, q)=-\sum_{|j| \leq M}{ }^{\prime \prime} i j q_{-j} p_{j}$ is no longer exactly preserved.
- We consider the harmonic actions $l_{j}(p, q)=\frac{\omega_{j}}{2}\left|q_{j}\right|^{2}+\frac{1}{2 \omega_{j}}\left|p_{j}\right|^{2}$

Theorem (B)

Under the assumptions of Theorem (A) we have, for $0 \leq t \leq \varepsilon^{-N+1}$,

$$
\begin{aligned}
\sum_{\ell=0}^{M} \omega_{\ell}^{2 s+1} \frac{\left|I_{\ell}(t)-I_{\ell}(0)\right|}{\varepsilon^{2}} & \leq C \varepsilon \\
\frac{|H(t)-H(0)|}{\varepsilon^{2}} & \leq C \varepsilon M^{-s-1} \\
\frac{|K(t)-K(0)|}{\varepsilon^{2}} & \leq C t \varepsilon M^{-s-1}
\end{aligned}
$$

The first estimate implies long-time regularity of the solution of the semi-discretization

$$
\left\|u^{M}(\cdot, t)\right\|_{s+1}^{2}+\left\|v^{M}(\cdot, t)\right\|_{s}^{2} \leq \varepsilon^{2}(1+C \varepsilon)
$$

Explicit Runge-Kutta method (DOPRI5), $2 M=2^{7}$

$$
\text { Atol }=10^{-5}, \quad \text { Rtol }=10^{-4}, \quad 32735 \text { accepted steps }
$$

Full discretization (trigonometric integrator)

To the semi-discretized system $\frac{d^{2} q}{d t^{2}}+\Omega^{2} q=f(q)$ we apply

$$
q^{n+1}-2 \cos (h \Omega) q^{n}+q^{n-1}=h^{2} \Psi f\left(\Phi q^{n}\right)
$$

where $\psi=\psi(h \Omega)$ and $\Phi=\phi(h \Omega)$. The filter functions are assumed to satisfy the symplecticty condition

$$
\psi(\xi)=\operatorname{sinc}(\xi) \phi(\xi)
$$

The velocity approximation p^{n} is given by

$$
2 h \operatorname{sinc}(h \Omega) p^{n}=q^{n+1}-q^{n-1}
$$

Aim: explain the long-time behaviour of this method

Assumptions for long-term energy preservation

a) Non-resonance condition of the form: for given N and $\varepsilon>0$ there exists $\sigma>0$ such that $(\cdots) \leq C \varepsilon^{N}$.
This is stronger than in the analytic case.
b) Numerical non-resonance condition

$$
\left|\sin \left(h \omega_{j}\right)\right| \geq h \varepsilon^{1 / 2} \quad \text { for } \quad|j| \leq M
$$

c) Symplecticity condition

$$
\psi(\xi)=\operatorname{sinc}(\xi) \varphi(\xi)
$$

d) Small initial data:

$$
\|q(0)\|_{s+1}^{2}+\|p(0)\|_{s}^{2} \leq \varepsilon^{2}, \quad s \geq \sigma+1
$$

Theorem (C)

Under the above assumptions we have for the trigonometric integrator, on an interval of length $0 \leq t_{n}=n h \leq \varepsilon^{-N+1}$,

$$
\begin{aligned}
\sum_{\ell=0}^{M} \omega_{\ell}^{2 s+1} \frac{\left|I_{\ell}\left(p^{n}, q^{n}\right)-I_{\ell}\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C \varepsilon \\
\frac{\left|H_{M}\left(p^{n}, q^{n}\right)-H_{M}\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C \varepsilon \\
\frac{\left|K\left(p^{n}, q^{n}\right)-K\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C\left(\varepsilon+M^{-s}+t \varepsilon M^{-s+1}\right)
\end{aligned}
$$

The first estimate implies boundedness over long times of the numerical solution (full discretization)

$$
\left\|q^{n}\right\|_{s+1}^{2}+\left\|p^{n}\right\|_{s}^{2} \leq \varepsilon^{2}(1+C \varepsilon)
$$

Numerical non-resonance condition, $\psi=\operatorname{sinc}, \phi=1$

Störmer-Verlet as trigonometric integrator

 For $\ddot{q}+\Omega^{2} q=g(q)$ we consider the Störmer-Verlet method$$
\begin{aligned}
q^{n+1}-2 q^{n}+q^{n-1} & =-(h \Omega)^{2} q^{n}+h^{2} g\left(q^{n}\right) \\
q^{n+1}-q^{n-1} & =2 h p^{n}
\end{aligned}
$$

and write it as trigonometric integrator

$$
\begin{aligned}
\widetilde{q}^{n+1}-2 \cos (h \widetilde{\Omega}) \widetilde{q}^{n}+\widetilde{q}^{n-1} & =h^{2} \Psi g\left(\Phi \widetilde{q}^{n}\right) \\
\widetilde{q}^{n+1}-\widetilde{q}^{n-1} & =2 h \operatorname{sinc}(h \widetilde{\Omega}) \widetilde{p}^{n}
\end{aligned}
$$

where $\psi=\psi(h \widetilde{\Omega}), \Phi=\phi(h \widetilde{\Omega})$ with $\psi=\operatorname{sinc}, \phi=1$, and

$$
I-\frac{1}{2}(h \Omega)^{2}=\cos (h \widetilde{\Omega}) \quad \text { or equiv. } \quad \sin \left(\frac{h \widetilde{\Omega}}{2}\right)=\frac{h \Omega}{2}
$$

$$
\widetilde{q}^{n}=\operatorname{sinc}(h \widetilde{\Omega}) q^{n} \quad \text { and } \quad \tilde{p}^{n}=p^{n}
$$

Application of results for exponential integrators

- analytical non-resonance condition for $\widetilde{\omega}_{j}$
- numerical non-resonance condition OK: $h \omega_{M}<2$
- symplecticity condition OK: $\psi=\operatorname{sinc}, \phi=1$
- smallness of initial data

We have for example

$$
\sum_{\ell=0}^{\infty} \widetilde{\omega}_{\ell}^{2 s+1} \frac{\left|\widetilde{\Lambda}_{\ell}\left(p^{n}, q^{n}\right)-\widetilde{I}_{\ell}\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} \leq C \varepsilon
$$

where $\quad \widetilde{I}_{\ell}\left(p^{n}, q^{n}\right)=\frac{\widetilde{\omega}_{\ell}}{2} \operatorname{sinc}^{2}\left(h \widetilde{\omega}_{\ell}\right)\left|q_{\ell}^{n}\right|^{2}+\frac{1}{2 \widetilde{\omega}_{\ell}}\left|p_{\ell}^{n}\right|^{2}$

Since

$$
\widetilde{I}_{\ell}\left(p^{n}, q^{n}\right)=\frac{\omega_{\ell}}{\widetilde{\omega}_{\ell}}\left(I_{\ell}\left(p^{n}, q^{n}\right)-\gamma\left(h \omega_{\ell}\right) \frac{\omega_{\ell}}{2}\left|q_{\ell}\right|^{2}\right)
$$

with $\gamma(h \omega)=\frac{(h \omega)^{2}}{4}<1$ we have:

Theorem (Störmer-Verlet)

Under the above assumptions we have for the Störmer-Verlet integrator, on an interval of length $0 \leq t_{n}=n h \leq \varepsilon^{-N+1}$,

$$
\begin{aligned}
\sum_{\ell=0}^{\infty} \omega_{\ell}^{2 s-1} \frac{\left|I_{\ell}\left(p^{n}, q^{n}\right)-I_{\ell}\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C\left(\varepsilon+h^{2}\right) \\
\frac{\left|H_{M}\left(p^{n}, q^{n}\right)-H_{M}\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C\left(\varepsilon+h^{2}\right) \\
\frac{\left|K\left(p^{n}, q^{n}\right)-K\left(p^{0}, q^{0}\right)\right|}{\varepsilon^{2}} & \leq C\left(\varepsilon+h^{2}+M^{-s}+t \varepsilon M^{-s+1}\right)
\end{aligned}
$$

Illustration: \quad CFL number ≈ 1.92

every fifth harmonic action is drawn

References

for analytical solution

Long-time analysis of nonlinearly perturbed wave equations
via modulated Fourier expansions.
Arch. Ration. Mech. Anal. 187 (2008) 341-368

for pseudo-spectral semi-discretization

Spectral semi-discretizations of weakly nonlinear wave equations over long times.
Found. Comput. Math. 8 (2008) 319-334

for full discretization

Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations.
Numerische Mathematik 110 (2008) 113-143

